Section 1.2a – Perfect Squares, Cubes, and their Roots

This booklet belongs to:______Block: _____

Squares and Square Roots

- To square a number is to raise the number to the second power
- A perfect Square then has **2 identical factors**

Example: $4^2 = 4 \cdot 4 = 16$ $9^2 = 9 \cdot 9 = 81$

- The identical factors are called the square root of a number
- The number with the rational square roots is called a **perfect square**
- We use the 'radical' or 'house' symbol $\sqrt{-}$ to indicate square roots

Example 1: Determine which of the following are perfect squares.

a)	49	b) $\frac{4}{9}$
c)	7	d) $\frac{4}{15}$

Solution 1:

- a) Yes, because $7 \cdot 7 = 49$, two identical factors
- b) Yes, because $\frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$, two identical factors
- c) No, because 7 cannot be written as the product of two identical factors
- d) No, because $\frac{4}{15}$ cannot be written as the product of two identical factors

Determining Square Roots Without a Calculator

Using a Factor Tree

Example 2: Determine the square root of 196

Solution 2:

So, $\sqrt{196} = \sqrt{2 \cdot 2 \cdot 7 \cdot 7} = \sqrt{2 \cdot 2} \cdot \sqrt{7 \cdot 7} = 2 \cdot 7 = 14$

NOTE: For whole numbers $\sqrt{x^2} = \sqrt{x \cdot x} = x$

Example 3: Determine the square root of 225

Solution 3:

So, $\sqrt{225} = \sqrt{3 \cdot 3 \cdot 5 \cdot 5} = \sqrt{3 \cdot 3} \cdot \sqrt{5 \cdot 5} = 3 \cdot 5 = 15$

Cubes and Cube Roots

• To cube a number is to raise the number to the **third** power

Example: $4^3 = 4 \cdot 4 \cdot 4 = 64$ $7^3 = 7 \cdot 7 \cdot 7 = 343$

• Some numbers can be written as the product of three identical factors

 $\circ \quad 27 = 3 \cdot 3 \cdot 3$ $\circ \quad 125 = 5 \cdot 5 \cdot 5$

- The identical factors are called the **cube root** of a number
- The number with a rational cube root is called a perfect cube
- We use the 'radical' or 'house' symbol $\sqrt[3]{}$ to indicate cube roots (the little 3 is called the **index of the root**)

Example 4: Determine which are perfect cubes.

a) 8 b)
$$\frac{27}{64}$$
 c) 25 d) $\frac{8}{9}$

Solution 4:

a) Yes, because $2 \cdot 2 \cdot 2 = 8$, three identical factors

b) Yes, because $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$, three identical factors

- c) No, because 25 cannot be written as the product of three identical factors
- d) No, because $\frac{8}{9}$ cannot be written as the product of three identical factors

Determining Cube Roots Without a Calculator

Example 5: Determine the cube root of 216

Solution 5:

Example 6: Determine the cube root of 512

Solution 6:

Therefore, $\sqrt[3]{512} = \sqrt[3]{2 \cdot 2 \cdot 2} = \sqrt[3]{8 \cdot 8 \cdot 8} = 8$

<u>Note:</u> For whole numbers $(\sqrt[3]{x})^3 = (\sqrt[3]{x^3}) = \sqrt[3]{x \cdot x \cdot x} = x$

Note: In the expression $\sqrt[k]{a}$, we call k the index, and assume $k \ge 2$. If the index is not written, the expression is assumed to be a square root, i.e. k = 2

Example: $\sqrt[5]{32} = 2$ because $2 \cdot 2 \cdot 2 \cdot 2 = 32$, five identical factors

Section 1.2a – Practice Questions

Emerging Level Questions

1. Find the square root of the perfect squares without a calculator

a)	√100	b)	√441
c)	√225	d)	√361
e)	√529	f)	√2 890 000

2. Find the cube root of the perfect cubes without a calculator

a)	3√27	b)	3√1000
c)	3√343	d)	∛1728
e)	∛3375	f)	3√8000

PROFICIENT LEVEL QUESTIONS

3. Find the perfect square root, if it exists, without a calculator

a)	25	b)	29
c)	80	d)	81
e)	169	f)	99
g)	1600	h)	900

4. Find the perfect cube root, if it exists, without a calculator

a)	8	b)	9
<u></u>	64	d)	Q1
()	04	u)	61
e)	100	†)	216
	1000	h)	144
87		,	

5. A cube has a volume of 216cm³. Determine the length of each side of the cube.

EXTENDING LEVEL QUESTIONS

6. The area of a rectangle with a length twice as long as the width is 1250m². Determine the length and the width of the rectangle.

7. A rectangular solid has a length three times the width and a height twice its width. If the volume of the rectangle solid is 384in³, determine the dimensions of the rectangular solid.

Section 1.2a – Answer Key

1. a) b) c) d) e) f)	10 21 15 19 23 1700
2. a) b) c) d) e) f)	3 10 7 12 15 20
3. a) b) c) d) e) f) g) h) i)	5 Does Not Exist (DNE) DNE 9 13 DNE 40 30 9 20 20 2 3
4. a) b) c) d) e) f) g) h) i)	2 Does Not Exist (DNE) 4 DNE DNE 6 10 DNE DNE 9
5.	6cm
6.	<i>l</i> = 50m
	w = 25m
7.	$l = 12 \ln h = 8 \ln h$
	w = 4in

Extra Work Space