Section 1.2a - Perfect Squares, Cubes, and their Roots

This booklet belongs to: \qquad Block: \qquad

Squares and Square Roots

- To square a number is to raise the number to the second power
- A perfect Square then has $\mathbf{2}$ identical factors

Example: $\quad 4^{2}=4 \cdot 4=16$

$$
9^{2}=9 \cdot 9=81
$$

- The identical factors are called the square root of a number
- The number with the rational square roots is called a perfect square
- We use the 'radical' or 'house' symbol $\sqrt{ }$ to indicate square roots

Example 1: \quad Determine which of the following are perfect squares.
a) 49
b) $\frac{4}{9}$
c) 7
d) $\frac{4}{15}$

Solution 1:

a) Yes, because $7 \cdot 7=49$, two identical factors
b) Yes, because $\frac{2}{3} \cdot \frac{2}{3}=\frac{4}{9}$, two identical factors
c) No, because 7 cannot be written as the product of two identical factors
d) No, because $\frac{4}{15}$ cannot be written as the product of two identical factors

Determining Square Roots Without a Calculator

Using a Factor Tree

Example 2: Determine the square root of 196

Solution 2:

So, $\sqrt{196}=\sqrt{2 \cdot 2 \cdot 7 \cdot 7}=\sqrt{2 \cdot 2} \cdot \sqrt{7 \cdot 7}=2 \cdot 7=14$

NOTE: For whole numbers $\sqrt{x^{2}}=\sqrt{x \cdot x}=\boldsymbol{x}$

Example 3: Determine the square root of 225

Solution 3:

So, $\sqrt{225}=\sqrt{3 \cdot 3 \cdot 5 \cdot 5}=\sqrt{3 \cdot 3} \cdot \sqrt{5 \cdot 5}=3 \cdot 5=15$

Cubes and Cube Roots

- To cube a number is to raise the number to the third power

Example: $\quad 4^{3}=4 \cdot 4 \cdot 4=64$

$$
7^{3}=7 \cdot 7 \cdot 7=343
$$

- Some numbers can be written as the product of three identical factors

$$
\begin{array}{ll}
\circ & 27=3 \cdot 3 \cdot 3 \\
\circ & 125=5 \cdot 5 \cdot 5
\end{array}
$$

- The identical factors are called the cube root of a number
- The number with a rational cube root is called a perfect cube
- We use the 'radical' or 'house' symbol $\sqrt[3]{ }$ to indicate cube roots (the little 3 is called the index of the root)

Example 4: Determine which are perfect cubes.
a) 8
b) $\frac{27}{64}$
c) 25
d) $\frac{8}{9}$

Solution 4:

a) Yes, because $2 \cdot 2 \cdot 2=8$, three identical factors
b) Yes, because $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=\frac{27}{64}$, three identical factors
c) No, because 25 cannot be written as the product of three identical factors
d) No, because $\frac{8}{9}$ cannot be written as the product of three identical factors

Determining Cube Roots Without a Calculator

Example 5: \quad Determine the cube root of 216

Solution 5:

or

Therefore, $\sqrt[3]{216}=\sqrt[3]{2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3}=\sqrt[3]{2 \cdot 2 \cdot 2} \cdot \sqrt[3]{3 \cdot 3 \cdot 3}=2 \cdot 3=6$

Example 6: Determine the cube root of 512

Solution 6:

Therefore, $\sqrt[3]{512}=\sqrt[3]{2 \cdot 2 \cdot 2}=\sqrt[3]{8 \cdot 8 \cdot 8}=8$
Note: For whole numbers $(\sqrt[3]{x})^{3}=\left(\sqrt[3]{x^{3}}\right)=\sqrt[3]{x \cdot x \cdot x}=x$
Note: In the expression $\sqrt[k]{a}$, we call k the index, and assume $k \geq 2$. If the index is not written, the expression is assumed to be a square root, i.e. $k=2$

Example: $\quad \sqrt[5]{32}=2$ because $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$, five identical factors

Section 1.2a - Practice Questions

Emerging Level Questions

1. Find the square root of the perfect squares without a calculator

2. Find the cube root of the perfect cubes without a calculator
a)
$\sqrt[3]{27}$
b) $\sqrt[3]{1000}$
c) $\sqrt[3]{343}$
d) $\sqrt[3]{1728}$
e) $\sqrt[3]{3375}$

PROFICIENT LEVEL QUESTIONS

3. Find the perfect square root, if it exists, without a calculator

i)

j) $\frac{8}{18}$
4. Find the perfect cube root, if it exists, without a calculator

a)	8	b)	9
c)	64	d)	81
e)	100	f)	216
g)	1000	h)	144

i) 625
j) 729
5. A cube has a volume of $216 \mathrm{~cm}^{3}$. Determine the length of each side of the cube.

EXTENDING LEVEL QUESTIONS

6. The area of a rectangle with a length twice as long as the width is $1250 \mathrm{~m}^{2}$. Determine the length and the width of the rectangle.
7. A rectangular solid has a length three times the width and a height twice its width. If the volume of the rectangle solid is $384 \mathrm{in}^{3}$, determine the dimensions of the rectangular solid.

Section 1.2a - Answer Key

1.

a) 10
b) 21
c) 15
d) 19
e) 23
f) 1700
2.
a) 3
b) 10
c) 7
d) 12
e) 15
f) 20
3.
a) 5
b) Does Not Exist (DNE)
c) DNE
d) 9
e) 13
f) DNE
g) 40
h) 30
i) $\frac{9}{20}$
j) $\frac{2}{3}$
4.
a) 2
b) Does Not Exist (DNE)
c) 4
d) DNE
e) DNE
f) 6
g) 10
h) DNE
i) DNE
j) 9

5.	6 cm
6.	$l=50 \mathrm{~m}$
	$w=25 \mathrm{~m}$
7.	$l=12 \mathrm{in}$
	$h=8 \mathrm{in}$
	$w=4 \mathrm{in}$

Extra Work Space

