Section 2.1a - Relations and Functions

This booklet belongs to: \qquad Block: \qquad

- We use graphs in Math, like History books use pictures. Graphs give us a quick way to make comparisons, draw conclusions, and approximate quantities. The next section will involve different names of graphing relationships and how to plot and read information.

Coordinate System

- Similar to a real number on a real number line, ordered pairs can be represented by points on the Cartesian Plane.
- Ordered pairs are written in the form (x, y)
- There is a unique point on the plane that corresponds to every ordered pair

- The ordered pair $\boldsymbol{A}(\mathbf{0}, \mathbf{0})$ is located at the origin.
- The ordered pair $\boldsymbol{B}(\mathbf{3}, \mathbf{2})$ is located three units to the right and two units up from the origin.
- The ordered pair $\boldsymbol{C}(-\mathbf{3}, \mathbf{0})$ is located three units to the left of the origin on the \boldsymbol{x}-axis.
- The ordered pair $\boldsymbol{D}(\mathbf{0}, \mathbf{3})$ is located three units up from the origin on the \boldsymbol{y}-axis.
- The ordered pair $\boldsymbol{E}(-3,-4)$ is located three units to the left and four units down from the origin.
- The ordered pair $\boldsymbol{F}(\mathbf{4},-\mathbf{3})$ is located four units to the right and three units down from the origin.
- The ordered pair $\boldsymbol{G}(-\mathbf{3}, \mathbf{4})$ is located three units to the left and four units up from the origin.

Ordered pairs $(4,-3)$ and $(-3,4)$ plot different points. That is why they are called ordered pairs, it makes a significant difference which number comes first.

Relations

- Relations are sets of ordered pairs (x, y)
- The set of the first components, or \boldsymbol{x} - values, is the DOMAIN
- The set of the second components or \boldsymbol{y} - values, is called the RANGE
- To find solutions to a relation, values are arbitrarily assigned for the \boldsymbol{x} term from the set of real numbers.
- This makes \boldsymbol{x} the independent variable
- Choosing input values for x provides us with output values for y
- This makes \boldsymbol{y} the dependant variable

Example:

Input	Relation	Output
x	$y=2 x+1$	y
-3	$2(-3)+1$	-5
0	$2(0)+1$	1
2	$2(2)+1$	5

These values represent $\mathbf{3}$ solutions to the infinitely many for the relation $y=2 x+1$.
These solutions can be represented as:

1. Ordered pairs: $(-3,-5)$, $(0,1)$,
2. In a table:

x	-3	0	2
y	-5	1	5

3. Using Mapping Notation

4. Or by graphing

Functions

- A function is a special type of relation

Function

- For every value of the domain (x-value $)$, there is one and only one, value for the range (y-value)
- Each element in the domain corresponds to exactly one element in the range.

One-to-One Function

- A function in which every individual value of the domain (\boldsymbol{x} - value) is associated with one value of the range (\boldsymbol{y}-value), and vice versa.
- This means that if the function is a one-to-one function, then for each x in the domain, there is one, and only one, y in the range, and no y in the range is the image of more than one x in the domain.

Hierarchy of Relations, Functions, and One-to-one Functions

Relation
Function
One-to-one Function

1-1

A function, not 1-1

Not a function, just a Relation

Note: The Range (Output) depends on the Domain (Input)

Example 3: \quad Given the ordered pairs: $(-5,4),(-3,2),(-2,0),(0,-2),(1,-3),(4,-4)$, what is the value of \boldsymbol{y} (output) when \boldsymbol{x} (input) is 0 ?

Solution 3: \quad From $(0,-2)$ the output is -2 or $y=-2$

Vertical Line Test for Functions

- An equation defines y as a function of x if and only if every vertical line in the coordinate plane intersects the graph of the equation only once.

Horizontal Line Test for One-to-One Functions

- A function y is a one-to-one function of x if and only if every horizontal line in the coordinate plane intersects the function at most only once.

Example 4: State whether the following relations is a function, a one-to-one function, or neither.
a)

b)

c)

Solution 4:

a) A vertical line intersects the graph once so it is a function. A horizontal line intersects the graph once, therefore it is a one-to-one function.
b) A vertical line intersects the graph once, so it is a function. A horizontal line intersects the graph more than once, therefore the graph is not a one-to-one function.
c) A vertical line intersects the graph more than once, so it is not a function, just a relation.

Section 2.1a - Practice Questions

Without plotting on a grid, which quadrant do the following points belong to?

7. Plot the points of the grid provided

$A(-3,1)$	$B(-4,-2)$	$C(-5,0)$	$D(0,2)$
$E(3,-5)$	$F(4,3)$	$G(4,0)$	$H(0,-4)$

8. A relation is:
a) Any set of ordered pairs
b) Two sets of ordered pairs that are related
c) A graph of ordered pairs
d) A set of ordered pairs where the domain corresponds to exactly one range
9. A function is:
a) Any set of ordered pairs
b) A set or ordered pairs in which a value in the domain corresponds to exactly one value in the range
c) A set of ordered pairs in which a value in the range corresponds to exactly one value in the domain
d) A graph of ordered pairs

Use the vertical line test to determine if the following are relations or functions

Do the mapping notations into functions, 1-1 functions, or neither?

Section 2.1a - Answer Key

1. IV
2. I
3. II
4. III
5. No Quadrant
6. No Quadrant
7. See Website
8. a
9. b
10. Function
11. Function
12. Not a Function
13. Function
14. Function
15. Function
16. $1-1$
17. Function
18. Function
19. Neither

Extra Work Space

