Section 2.1b - Domain, Range, and Non-Linear Equations

This booklet belongs to: \qquad Block: \qquad

Expressions

- An expression is a collection of numbers, variables and operation signs
- Expressions DO NOT have an EQUALS SIGN

Examples:

a) 5
b) $2 x-3$
c) $3 x^{2}+2 x-5$
d) $\sqrt{5}$

Equations

- An equation is a mathematical statement that two expressions are equivalent
- There is an EQUALS SIGN

Examples:

a) $y=2$
b) $y=3 x+4$
c) $x+4 y=7$
d) $x=y^{2}$

Domain and Range

- Set Notation is how we express Domain and Range
- It tells us what values are included in our Domain and Range
- Consider the following graph,
- Tt extends infinitely positive and negative on both the x-axis and y-axis
- So, we say:

$$
\text { D: }\{x \mid x \in \mathbb{R}\}
$$

```
x, such that, x is in the set of all real numbers
```

$$
\mathrm{R}:\{y \mid y \in \mathbb{R}\}
$$

[^0]

- Consider the following graph
- In this one we see that graph will extend infinitely along the x-axis
- The y-values have a lowest most point, so we have to use inequalities to describe the range
$\mathrm{D}:\{x \mid x \in \mathbb{R}\}$
$\mathrm{R}:\{y \mid y \geq-2 ; y \in \mathbb{R}\}$

- The following graph has a Domain and Range restriction
- It is bounded by the left and right most point and the upper and lower most point
- It is what we call a 'continuous' function because there are no breaks

D: $\{x \mid-3 \leq x \leq 6 ; x \in \mathbb{R}\}$
$\mathrm{R}:\{y \mid-1 \leq y \leq 5 ; y \in \mathbb{R}\}$

- The following is a graph of discrete points.
- In this case we list only the x-values and y-values of the points
- Do not repeat values if two or more points have the same coordinate

D: $\{-3,-2,0,6\}$
$R:\{-3,-1,4,5\}$

- In Grade 11 and 12, we will expand our notation to Interval Notation as well as Set Notation

Non-Linear Equations - Parabolas Only

Rules for graphing Non-Linear Equations

1. Use positive numbers, negative numbers, and zero whenever possible.
2. If any value is to an even power both positive and negative values must be used.
3. Try to find the point of symmetry (Where the Parabola reaches it's max/min point

Example 1: Graph: $y=x^{2} \quad$ What is the Domain and the Range of the Graph?
Solution 1: \quad Since x is an even power, positive and negative values of x are used.

x	0	1	-1	2	-2	\rightarrow	x	0	1	-1	2	-2
y							y	0	1	1	4	4

Notice the Line of Symmetry occurs at the lowest point, the Vertex of the Parabola!

$$
x=0
$$

Vertical Line through 0 on the x-axis

D: $\{x \mid x \in \mathbb{R}\}$
$\mathrm{R}:\{y \mid y \geq 0 ; y \in \mathbb{R}\}$

Example 2: Graph: $y=x^{2}-1 \quad$ What is the Domain and the Range of the Graph?
Solution 2: \quad Since x is an even power, positive and negative values of \mathbf{x} are used.

x	0	1	-1	2	-2	\rightarrow	x	0	1	-1	2	-2
y							y	-1	0	0	3	3

Example 3: Graph: $y=(x-3)^{2} \quad$ What is the Domain and the Range of the Graph?
Solution 3: Consider what makes the inner portion of the brackets equal zero. Then choose values to the left and right of that.

| x | 3 | 2 | 1 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\rightarrow| x | 3 | 2 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| y | | | | |
| | | | y | 0 |

Notice the Line of Symmetry occurs at the lowest point, the Vertex of the Parabola!

$$
x=3
$$

Vertical Line through 3 on the x-axis

D: $\{x \mid x \in \mathbb{R}\}$
$\mathrm{R}:\{y \mid y \geq 0 ; y \in \mathbb{R}\}$

Example 4: Graph: $y=-x^{2}+4 \quad$ What is the Domain and the Range of the Graph?
Solution 4: \quad Remember the negative is not included in the squaring. $-x^{2} \rightarrow(-1) x^{2}$

x	0	1	-1	2	-2	\rightarrow	x	0	1	-1	2	-2
y							y	0	3	3	0	0

Notice the Line of Symmetry occurs at the highest point, the Vertex of the Parabola!

$$
x=0
$$

Vertical Line through 0 on the x-axis

Just for Fun - A Couple Complicated Examples

Example 5: Is $x^{2}+y^{2}=9$ a function? What is the Domain and Range of the graph?
Solution 5: \quad Since x and y is an even power, positive and negative values of \boldsymbol{x} and \boldsymbol{y} are used.

x	0		1	-1			3	-3			5	-5
y		0			1	-1			3	-3		

x	0	± 3	1	-1	$\pm \sqrt{8}$	$\pm \sqrt{8}$	3	-3	0	0	5	-5
y	± 3	0	$\pm \sqrt{8}$	$\pm \sqrt{8}$	1	-1	0	0	3	-3	\emptyset	\emptyset

The graph is not a function since it does not pass the vertical line test.

D: $\{x \mid-3 \leq x \leq 3 ; x \in \mathbb{R}\}$
$\mathrm{R}:\{y \mid-3 \leq y \leq 3 ; y \in \mathbb{R}\}$

Example 8: Is $y=2^{x}$ a function? What is the Domain and the Range of the Graph?
Solution 8: \quad Since x is in the exponent, positive and negative values of x are used

x	-3	-2	-1	0	1	2	3
y							

\rightarrow| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | 1 | 2 | 4 | 8 |

The graph is a function since it does pass the vertical line test.

D: $\{x \mid x \in \mathbb{R}\}$
$\mathrm{R}:\{y \mid y>0 ; y \in \mathbb{R}\}$

Example 9: Is $y=\frac{1}{x}$ a function? What is the Domain and the Range of the Graph?
Solution 9: \quad Since \boldsymbol{x} is in the denominator, values between $\mathbf{0}$ and 1 must be used

x	-3	-2	-1	0	1	2	3	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{4}$
y											

x	-3	-2	-1	0	1	2	3	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{4}$
y	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	\emptyset	1	$\frac{1}{2}$	$\frac{1}{3}$	2	-2	4	-4

- The graph is a function since it does pass the vertical line test.
- x cannot be zero because $\frac{1}{0}$ does not exist (asymptote)
- $\quad y$ cannot be zero because 1 divided by a very large number is a very small number, but still not zero.

Section 2.1b - Practice Questions
 EMERGING LEVEL QUESTIONS

1. The domain of a relation is:
a) The set of all x and y values in ordered pairs
b) The sum of the components in the ordered pairs
c) The set of all the first components in the ordered pairs
d) The set of all the second components on the ordered pairs
2. The range of a relation is:
a) The set of all x and y values in ordered pairs
b) The sum of the components in the ordered pairs
c) The set of all the first components in the ordered pairs
d) The set of all the second components on the ordered pairs

State the Domain and Range of the following Graphs
3.

D:
R:
5.

D:

R:
4.

D:

R:
6.

D:
R:

PROFICIENT LEVEL QUESTIONS

Graph the Non-Linear Equations, use the table if needed. Include Domain and Range in Set Notation.
7. $y=x^{2}+1$

x					
y					

D:
R.
9. $y=(x-2)^{2}$

x					
y					

D:
R :
8. $y=\frac{1}{2} x^{2}$

x					
y					

D:
R.
10. $y=-x^{2}$

x					
y					

D:
R.
11. $y=x^{2}-2$

D:
R:
12. $y=(x+2)^{2}-2$

x					
y					

D:

R:

EXTENDING LEVEL QUESTIONS

13. $y=-x^{3}$

x					
y					

D:

R:
14. $x=\frac{1}{2} y^{2}$

x					
y					

D:
R :

See Website for Answer Key - Section 2.1b

Extra Work Space

[^0]: y, such that, y is in the set of all real numbers

