Section 2.1b – Domain, Range, and Non-Linear Equations

This booklet belongs to:______Block: _____

Expressions

- An expression is a collection of numbers, variables and operation signs
- Expressions DO NOT have an EQUALS SIGN

Examples:

- a) 5 b) 2x - 3c) $3x^2 + 2x - 5$
- d) √5

Equations

- An equation is a mathematical statement that two expressions are equivalent
- There is an EQUALS SIGN

Examples:

a) y = 2b) y = 3x + 4c) x + 4y = 7d) $x = y^{2}$

Domain and Range

- Set Notation is how we express Domain and Range
- It tells us what values are included in our Domain and Range
- Consider the following graph,
- Tt extends infinitely positive and negative on both the x-axis and y-axis
- So, we say:

 $\mathsf{D}: \{x \mid x \in \mathbb{R}\}$

x, such that, x is in the set of all real numbers

- Consider the following graph
- In this one we see that graph will extend infinitely along the x-axis
- The y-values have a lowest most point, so we have to use inequalities to describe the range

- The following graph has a Domain and Range restriction
- It is bounded by the left and right most point and the upper and lower most point
- It is what we call a 'continuous' function because there are no breaks

$$\mathsf{D}: \{x \mid -3 \le x \le 6; x \in \mathbb{R}\}$$

$$\mathsf{R}: \{y| - 1 \le y \le 5; y \in \mathbb{R}\}$$

- The following is a graph of discrete points.
- In this case we list only the x-values and y-values of the points
- Do not repeat values if two or more points have the same coordinate

• In Grade 11 and 12, we will expand our notation to Interval Notation as well as Set Notation

Non-Linear Equations – Parabolas Only

Rules for graphing Non-Linear Equations

- 1. Use positive numbers, negative numbers, and zero whenever possible.
- 2. If any value is to an even power both positive and negative values must be used.
- 3. Try to find the point of symmetry (Where the Parabola reaches it's max/min point

Example 1: Graph: $y = x^2$ What is the Domain and the Range of the Graph?

Solution 1: Since *x* is an even power, **positive and negative values** of *x* are used.

Example 2: Graph: $y = x^2 - 1$ What is the Domain and the Range of the Graph? **Solution 2:** Since x is an even power, **positive and negative** values of **x** are used.

Graph: $y = (x - 3)^2$ What is the Domain and the Range of the Graph?

Solution 3: Consider what makes the inner portion of the brackets equal zero. Then choose values to the left and right of that.

Example 4: Graph: $y = -x^2+4$ What is the Domain and the Range of the Graph? Remember the negative is not included in the squaring. $-x^2 \rightarrow (-1)x^2$ Solution 4: 1 -12 х 0 -2х 0 1 -1 2 $^{-2}$ 0 3 3 0 0 y y 10 Notice the Line of Symmetry occurs at the highest point, the Vertex of the Parabola! (0, 4)x = 0(-1, 3)(1, 3)Vertical Line through 0 on the x - axis(-2, 0)(2, 0)-10 0 ------ $\mathsf{D}: \{x \mid x \in \mathbb{R}\}$ $\mathsf{R}: \{y \mid y \le 4; y \in \mathbb{R}\}$

Just for Fun – A Couple Complicated Examples

Example 5: Is $x^2 + y^2 = 9$ a function?

What is the Domain and Range of the graph?

Solution 5: Since *x* and *y* is an even power, **positive and negative** values of *x* and *y* are used.

x	0		1	-1			3	-3			5	-5	\rightarrow
у		0			1	-1			3	-3			

Example 8: Is $y = 2^x$ a function? What is the Domain and the Range of the Graph?

 \rightarrow

Solution 8: Since x is in the exponent, **positive and negative values** of x are used

x	-3	-2	-1	0	1	2	3
у							

x	-3	-2	-1	0	1	2	3
У	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

The graph is a function since it does pass the
vertical line test.

 $\mathsf{D}: \{x \mid x \in \mathbb{R}\}$

 $\mathsf{R}: \{y \mid y > 0; y \in \mathbb{R}\}$

What is the Domain and the Range of the Graph?

Solution 9:	Since <i>x</i> is in the denominator, values between 0 and 1 must be used

x	-3	-2	-1	0	1	2	3	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{4}$	→		
у														
x	-3	-2	-1	0	1	2	3	$\frac{1}{2}$	$-\frac{1}{2}$		$-\frac{1}{4}$			
у	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	Ø	1	$\frac{1}{2}$	$\frac{1}{3}$	2	-2	4	-4			
														_
, 		D: { <i>x</i>	: <i>x</i> ≠	0; x e	Ξ ℝ }						5			
 		R: {)	<i>י</i> <i>y</i> ≠	0; y ∈								$\mathbf{\mathcal{L}}$		
								-1	0	-5			5	
														-

- The graph is a function since it does pass the vertical line test.
- x cannot be zero because $\frac{1}{0}$ does not exist (asymptote)
- *y* cannot be zero because 1 divided by a very large number is a very small number, but still not zero.

Section 2.1b – Practice Questions

EMERGING LEVEL QUESTIONS

- 1. The domain of a relation is:
 - a) The set of all *x* and *y* values in ordered pairs
 - b) The sum of the components in the ordered pairs
 - c) The set of all the first components in the ordered pairs
 - d) The set of all the second components on the ordered pairs
- 2. The range of a relation is:
 - a) The set of all *x* and *y* values in ordered pairs
 - b) The sum of the components in the ordered pairs
 - c) The set of all the first components in the ordered pairs
 - d) The set of all the second components on the ordered pairs

State the Domain and Range of the following Graphs

PROFICIENT LEVEL QUESTIONS

Graph the Non-Linear Equations, use the table if needed. Include Domain and Range in Set Notation.

EXTENDING LEVEL QUESTIONS

13. $y = -x^3$ 14. $x = \frac{1}{2}y^2$ 10 5 -10 0 -10 -5 5 10 -5 -10 x x y y D: D:

R:

9

R:

See Website for Answer Key – Section 2.1b

Extra Work Space