Section 2.2a – Linear Equations

This booklet belongs to:______Block: _____

Linear Equations

- A linear equation in Standard Form is an equation of the form Ax + By = C, where A, B, and C are constants and x and y are variables. All linear equations are functions except a vertical line.
- Another form is Slope-Intercept Form y = mx + b, where m is the slope and b is the y-intercept

Solutions to a Line

- Next is **figuring out if a point is on a line**. That is the same as saying: Is the **following point a solution** to the **equation of the line**.
 - ✓ If the point is a solution, then when you plug the (x, y) into the given equation, it will stay equal, and the point is on the line
 - ✓ If the point is not a solution, then when you plug the (x, y) into the given equation, it will not stay equal, and the point is not on the line

Example 1: Does the line y = 2x + 5 go through the point (1,8)?

Solution 1:

- Since x is 1, we plug 1 in for x and since y is 8, we plug 8 in for y.
- Work through the equation and see if it stays equal.
- If it does, it's a solution (A point on the line)
- If it doesn't, it's not a solution (Not a point on the line)

$$y = 2x + 5$$

 $8 = 2(1) + 5$
 $8 = 2 + 5$
 $8 = 7$

• 8 DOES NOT EQUAL 7

So that means that (1, 8) is **NOT a solution** to y = 2x + 5

In other words, the point at (1, 8) is **not on the line** with the equation y = 2x + 5

Example 2:

Using

 $\frac{-2}{3}$

-5

(0, 4)

0

(3, 2)

5

-5

• Does the line
$$y = -\frac{2}{5}x + 6$$
 go through the point (10, 2)?
Solution 2:
 $y = -\frac{2}{5}(10) + 6 \rightarrow 2 = -\frac{2}{5}(10) + 6$
 $2 = -\frac{20}{5} + 6 \rightarrow 2 = -4 + 6 \rightarrow 2 = 2$
(10, 2) is a solution to the equation $y = -\frac{2}{5}x + 6$

Graphing Linear Equations in Slope-Intercept Form: $y = mx + b$
1. Identify the $y - intercept$, plot that point.
2. Identify the Slope in the given equation and trace it to your next point, plot that
3. Repeat step if 2
4. Connect the points to create your line. $m = Slope = \frac{Rise}{Run}$ $b = y$ -intercept
OR
1. Select three values of x that are multiples of the denominator of the slope.
2. Solve for y in each case.
3. Plot three points from steps 1 and 2. Draw a straight line through the points
Example 3: Graph $y = -\frac{2}{3}x + 4$ (Slope is the constant in front of the x)
Solution 3: This is why we love Slope-Intercept Form: Identify the y -intercept: $+ 4$
Plot it.
Draw your slope using $\frac{rise}{run}$. Either $\frac{-2}{3}$ or $\frac{2}{-3}$ You'll end up with the same results!
 $\frac{(-3, 5)}{5}$ $\frac{$

----is more ome given -Intercept ation

Dashed

Your Final

Graph

1

(3,2)

-5

As you can see, same result! i_____i

(0,4)

2

5

0

(3,2)

(0, 4)

2 -3

5

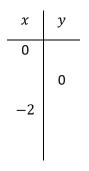
-5

Graphing Linear Equations in Standard Form: Ax + By = C

- 1. To find the y intercept (where the line crosses the y axis), set x = 0 and solve for y. To find the x - intercept (where the line crosses the x-axis), set y = 0 and solve for x.
- 2. To get a third point, pick another value for x, and solve for y.
- 3. Plot the three points from steps 1 and 2 and draw a straight line through the points.

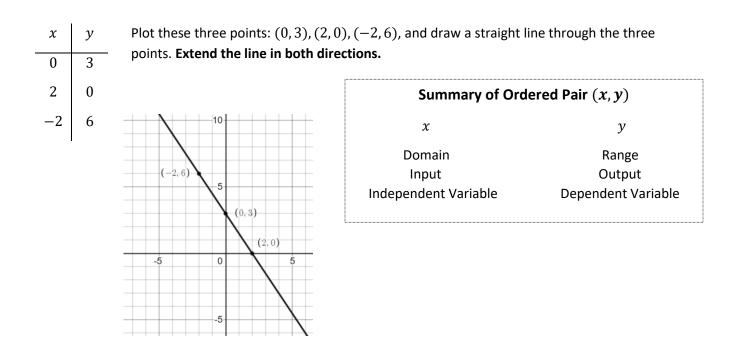
Example 4: Graph 3x + 2y = 6

Solution 4: Three points picked: Solve for three missing values



3x + 2y = 6 3x + 2y = 6 3x + 2y = 63(0) + 2y = 6 3x + 2(0) = 6 3(-2) + 2y = 6y = 3 x = 2 y = 6

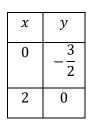
Therefore, the ordered pairs are:



Example 5: Graph the following function: 3x - 4y = 6

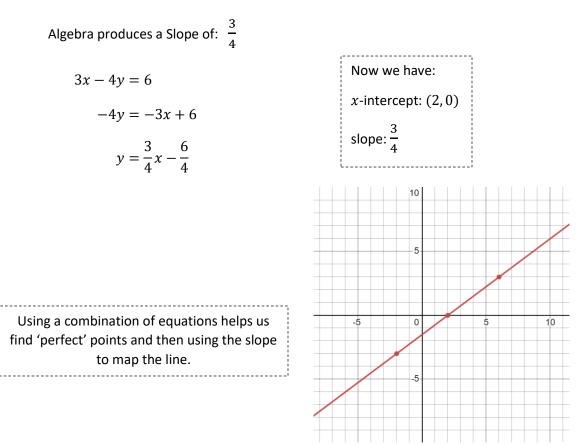
Solution 5:

- In this scenario we can use both of our equation to ensure we do not have to estimate points
- First let's see what the *x*-intercept and *y*-intercept are using our Standard Form Table of Values



For the y-intercept 3x - 4y = 6 3(0) - 4y = 6 -4y = 6 $y = -\frac{6}{4}$ $y = -\frac{3}{2}$ For the x-intercept 3x - 4y = 6 3x - 4(0) = 6 3x = 6 x = 2

- As we can see, the x-intercept is an exact whole number, but the y-intercept would be an estimation
- Let's use our algebra to manipulate the equation from Standard Form to Slope-Intercept Form
- This way we will have an exact point and the we can simply map the slope from there.



Section 2.2a – Practice Questions

EMERGING LEVEL QUESTIONS

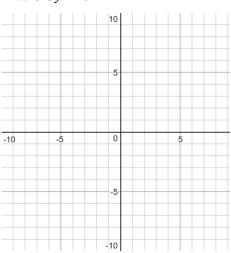
Determine whether the given ordered pair is a solution to the equation (a point on the line).

1. $(2,3); 3x - 5y = -9$	2. (0,4); $y = -\frac{1}{3}x + 4$
3. $(1,-1); 3y = 5 - 2x$	4. (6,8); $\frac{1}{3}x - \frac{1}{4}y = 4$
5. $(4,2); x = 4$	6. $(-1,3); y = -1$
7. $(4, -3); 0.05x - 1.2y = 3.8$	8. $\left(\frac{2}{3}, -\frac{3}{4}\right); \ 60x - 36y = 13$

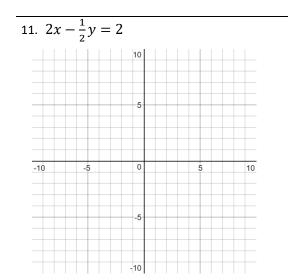
PROFICIENT LEVEL QUESTIONS

Graph the following Linear Equations

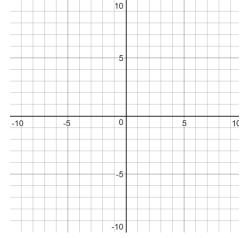
9. 2x + 3y = 6

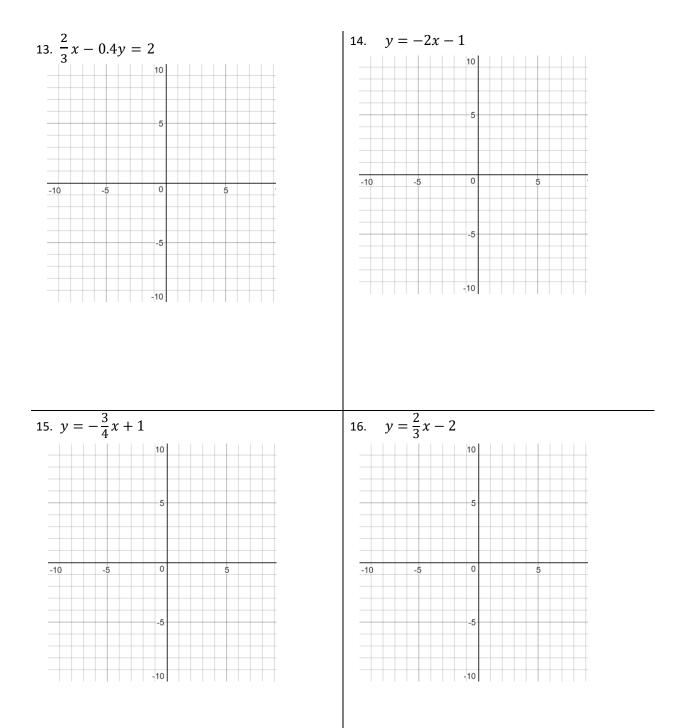


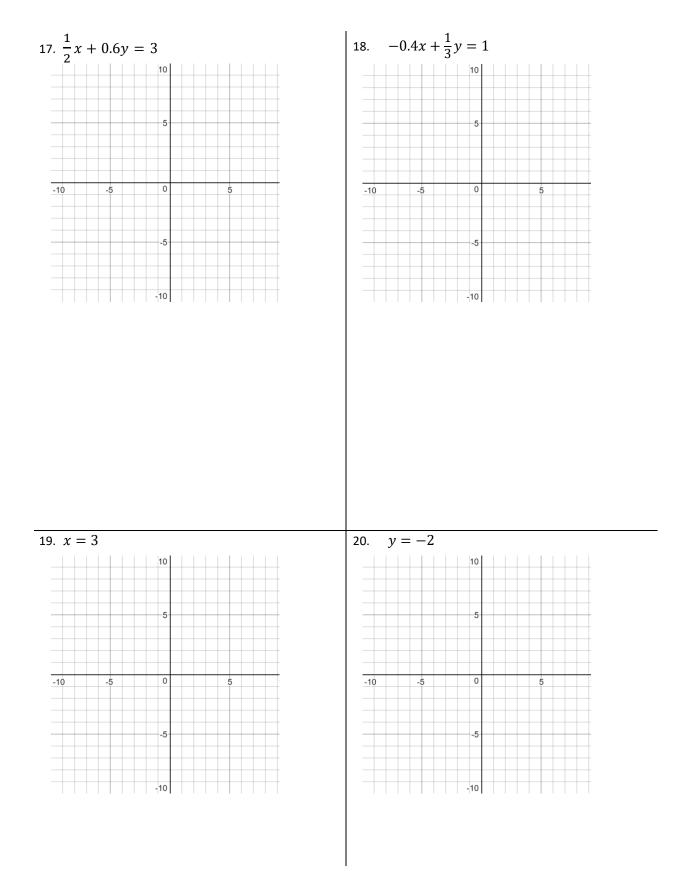




12. 3x + 2y = 5







Section 2.2a Answer Key available on the Website

Extra Work Space