Section 2.2a - Linear Equations

This booklet belongs to: \qquad Block: \qquad

Linear Equations

- A linear equation in Standard Form is an equation of the form $A x+B y=C$, where A, B, and C are constants and x and y are variables. All linear equations are functions except a vertical line.
- Another form is Slope-Intercept Form $y=m x+b$, where m is the slope and b is the y-intercept

Solutions to a Line

- Next is figuring out if a point is on a line. That is the same as saying: Is the following point a solution to the equation of the line.
$\checkmark \quad$ If the point is a solution, then when you plug the (x, y) into the given equation, it will stay equal, and the point is on the line
\checkmark If the point is not a solution, then when you plug the (x, y) into the given equation, it will not stay equal, and the point is not on the line

Example 1: \quad Does the line $\quad y=2 x+5 \quad$ go through the point $(1,8)$?

Solution 1:

- \quad Since \boldsymbol{x} is $\mathbf{1}$, we plug $\mathbf{1}$ in for \boldsymbol{x} and since \boldsymbol{y} is $\mathbf{8}$, we plug $\mathbf{8}$ in for \boldsymbol{y}.
- Work through the equation and see if it stays equal.
- If it does, it's a solution (A point on the line)
- If it doesn't, it's not a solution (Not a point on the line)

$$
\begin{gathered}
y=2 x+5 \\
8=2(1)+5 \\
8=2+5 \\
8=7
\end{gathered}
$$

- 8 DOES NOT EQUAL 7

So that means that $(1,8)$ is NOT a solution to $y=2 x+5$

In other words, the point at $(1,8)$ is not on the line with the equation $y=2 x+5$

Example 2:

- Does the line $\quad y=-\frac{2}{5} x+6$ go through the point $(10,2)$?

Solution 2:

$(10,2)$ is a solution to the equation $y=-\frac{2}{5} x+6$

Graphing Linear Equations in Slope-Intercept Form: $\quad \boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$

1. Identify the y-intercept, plot that point.
2. Identify the Slope in the given equation and trace it to your next point, plot that
3. Repeat step \#2
4. Connect the points to create your line.

$$
m=\text { Slope }=\frac{\text { Rise }}{\text { Run }} \quad b=y \text {-intercept }
$$

OR

1. Select three values of x that are multiples of the denominator of the slope.
2. Solve for y in each case.
3. Plot three points from steps 1 and 2. Draw a straight line through the points

This step is more cumbersome given the Slope-Intercept Equation

Example 3: \quad Graph $y=-\frac{2}{3} x+4 \quad$ (Slope is the constant in front of the x)
Solution 3: This is why we love Slope-Intercept Form: Identify the y-intercept: $+\mathbf{4}$
Plot it.
Draw your slope using $\frac{\text { rise }}{\text { run }}$: Either $\frac{-2}{3}$ or $\frac{2}{-3} \quad$ You'll end up with the same results!

2

Erase the Dashed Lines for Your Final Graph

Graphing Linear Equations in Standard Form: $\quad \boldsymbol{A x}+\boldsymbol{B y}=\boldsymbol{C}$

1. To find the \boldsymbol{y} - intercept (where the line crosses the y-axis), set $x=0$ and solve for y.

To find the \boldsymbol{x} - intercept (where the line crosses the x -axis), set $\mathrm{y}=0$ and solve for x .
2. To get a third point, pick another value for x, and solve for y.
3. Plot the three points from steps 1 and 2 and draw a straight line through the points.

Example 4: \quad Graph $3 x+2 y=6$

Solution 4: \quad Three points picked: \quad Solve for three missing values

Therefore, the ordered pairs are:

x	y
0	3
2	0
-2	6

Plot these three points: $(0,3),(2,0),(-2,6)$, and draw a straight line through the three points. Extend the line in both directions.

Example 5: \quad Graph the following function: $\quad 3 x-4 y=6$

Solution 5:

- In this scenario we can use both of our equation to ensure we do not have to estimate points
- First let's see what the x-intercept and y-intercept are using our Standard Form Table of Values

x	y
0	$-\frac{3}{2}$
2	0

$$
\begin{aligned}
& \text { For the } y \text {-intercept } \\
& \begin{aligned}
3 x-4 y & =6 \\
3(0)-4 y & =6 \\
-4 y & =6 \\
y & =-\frac{6}{4} \\
3 x-4 y & =6
\end{aligned} \\
& y
\end{aligned} \begin{aligned}
3 x-4(0) & =6 \\
y & =-\frac{3}{2}
\end{aligned}
$$

- As we can see, the x-intercept is an exact whole number, but the y-intercept would be an estimation
- Let's use our algebra to manipulate the equation from Standard Form to Slope-Intercept Form
- This way we will have an exact point and the we can simply map the slope from there.

Algebra produces a Slope of: $\frac{3}{4}$

$$
\begin{aligned}
3 x-4 y & =6 \\
-4 y & =-3 x+6 \\
y & =\frac{3}{4} x-\frac{6}{4}
\end{aligned}
$$

> Now we have:
> x-intercept: $(2,0)$
> slope: $\frac{3}{4}$

Section 2.2a - Practice Questions
 EMERGING LEVEL QUESTIONS

Determine whether the given ordered pair is a solution to the equation (a point on the line).

1. $(2,3) ; 3 x-5 y=-9$	2. $(0,4) ; y=-\frac{1}{3} x+4$
3. $(1,-1) ; 3 y=5-2 x$	
7.	

PROFICIENT LEVEL QUESTIONS

Graph the following Linear Equations
9. $2 x+3 y=6$

11. $2 x-\frac{1}{2} y=2$

10. $2 x+y=-4$

12. $3 x+2 y=5$

13. $\frac{2}{3} x-0.4 y=2$

15. $y=-\frac{3}{4} x+1$

14. $y=-2 x-1$

16. $y=\frac{2}{3} x-2$

17. $\frac{1}{2} x+0.6 y=3$

18. $-0.4 x+\frac{1}{3} y=1$

20. $y=-2$

Section 2.2a Answer Key available on the Website

Extra Work Space

