Section 2.2b – Slope and Rate of Change

This booklet belongs to:______Block: _____

<u>Slope</u>

- The slope of a linear equation describes the steepness and direction of a line
- As a line is traced from left to right the slope is the vertical change relative to the horizontal change

NOTE: Use Time and Money to Explain Slope

Finding slope from a graph

Example of positive slope

Slope of segment AB =
$$\frac{vertical change}{horizontal change} = \frac{6}{4} = \frac{3}{2}$$

Slope of segment AC = $\frac{vertical change}{horizontal change} = \frac{9}{6} = \frac{3}{2}$
Slope of segment BC = $\frac{vertical change}{horizontal change} = \frac{3}{2}$

- It doesn't matter where you start measuring, the slope of a straight line is constant between any two points you pick
- The Slope does not change!

www.mrherlaar.weebly.com

Example of negative slope

Slope of segment DE =
$$\frac{vertical change}{horizontal change} = -\frac{3}{4}$$

Slope of segment DF =
$$\frac{vertical change}{horizontal change} = -\frac{6}{8} = -\frac{3}{4}$$

Slope of segment
$$EF = \frac{vertical change}{horizontal change} = -\frac{3}{4}$$

- It doesn't matter where you start measuring, the slope of a straight line is constant between any two points you pick
- The Slope does not change!

Finding Slope from Ordered Pairs

Slope Formula

The slope, *m*, of a line segment between two points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Example of positive slope

Slope of segment AB = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 2}{-2 - 2} = \frac{-6}{-4} = \frac{3}{2}$

Slope of segment AC = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 5}{-2 - 4} = \frac{-9}{-6} = \frac{3}{2}$

Slope of segment BC = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{2 - 4} = \frac{-3}{-2} = \frac{3}{2}$

- The order you pick the points will not change the outcome. The Slope will be the same either way
- Switch the order and give it a try!

Example of negative slope

Slope of segment DE =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-2)}{-3 - 1} = \frac{3}{-4} = -\frac{3}{4}$$

Slope of segment DF = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-5)}{-3 - 5} = \frac{6}{-8} = -\frac{3}{4}$

Slope of segment EF =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - (-5)}{1 - 5} = \frac{3}{-4} = -\frac{3}{4}$$

- The order you pick the points will not change the outcome. The Slope will be the same either way
- Switch the points and give it a try!

Lines with Zero Slope and Undefined Slope

• If two different points have the same *y* – *value*, the line (or line segment) joining the two points is **horizontal**. (Think *h* looks like an upside down *y*)

Example of Zero Slope (Black Line on the Grid)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0}{x_2 - x_1} = 0$$

• If two different points have the same x - value, the line (or line segment) joining the two points is **vertical**. (Think *x* looks like two back to back v's)

Example of Undefined Slope (Red Line on the Grid)

 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{0} =$ Undefined

Rate of Change

- The Greek letter Delta (Δ) is used to represent *change*.
- We use <u>Rates of Changes</u> to help **compare** quantities with different units.
- The formula for Rate of Change is: *change in y* over *change in x*.

Rate of Change

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- Does this look familiar?
- What is the equation for Slope?

Examples of Rates of Change:

1.	Kilometers per hour:	km/hr or	$\frac{km}{h}$	
2.	Miles per gallon:	miles/gal	or	mi gal
3.	Dollars per hour:	\$/hr	or	dollars hour

4. If the city of Surrey grew by 120 000 people over a five-year period.

It has a rate of change of: $\frac{120\ 000\ people}{5\ years} = 24\ 000\ people/year$

5. If a person runs the 400m race in 56 *seconds*, they run at a rate of:

$$\frac{400m}{56 \, sec} = 7.14 \text{ meters/second}$$

- Rates of Change are just the slope relationship of two variables
- The variable on the y axis is the **dependent variable**
- The variable on the x axis is the **independent variable** (Usually: TIME)

Example 1:

Paul rents a car with a full gas tank. The odometer read 86 347km. Paul used the car for 3 days. When he returned it, the odometer read was 86 721km and it needed 63 litres to fill up. The cost of renting the car was \$96 plus gas which cost 90 cents per litre.

- a) Determine the fuel efficiency of the car (km/litre).
- b) Determine the average rate of travel per day.
- c) Determine the cost of renting the car per day.

Solution 1:

a)
$$\frac{\Delta y}{\Delta x} = \frac{(86\ 721 - 86\ 347)\ km}{(63 - 0)\ litres} = 5.94\ km/litre$$

b)
$$\frac{\Delta y}{\Delta x} = \frac{(86\ 721 - 86\ 347)km}{(3-0)days} = 124.7 \text{ km/day}$$

c)
$$\frac{\Delta y}{\Delta x} = \frac{(96-0)\$}{(3-0)days} + \frac{63(0.90)}{3} = \$50.90/day$$

- Rates of Change can be visualized using graphs. As mentioned the **denominator** quantity is generally placed of the x axis, the **numerator** value is placed on the y axis.
- **Example 2:** Between 2000 and 2010, the cost of a 42" LCD TV dropped from \$4600 to \$1200. Graph this result and determine the average drop in price per year.
- **Solution 2:** LCD TVs have been dropping at an average rate of \$340 per year.

$$Slope = \frac{\Delta y}{\Delta x} = \frac{4600 - 1200}{2000 - 2010} = \frac{\$3400}{-10 \ yrs} = \frac{\$340}{-1 \ yr} = -\$340/yr$$

- **Example 3:** Most cars depreciate as they age. A car costing \$30 000 will have a value of \$2500 at the end of 10 years.
 - a) Write a formula for its value V, when it is t years old. $0 \le t \le 10$
 - b) Draw the graph of this linear function
 - c) Determine the cars value after 4.5 years
 - d) When is the car's value between \$12 000 and \$15 000?
 - e) How much value does the car lose every 2.5 years?
 - f) What is the rate of change of the car's value with respect to time?

Solution 3:

a) Slope:
$$\frac{\Delta y}{\Delta x} = \frac{30\ 000 - 2500}{0 - 10} = \frac{\$27\ 500}{-10} = -2750/\text{yr}$$
 Therefore $V = 30\ 000 - 2750t$

b)

- c) $V = 30\,000 2750(4.5) = $17\,625$
- d) $V = 30\ 000 2750(t) = 12\ 000 \rightarrow 2750t = 18\ 000 \rightarrow t = 6.5$ years $V = 30\ 000 - 2750(t) = 15\ 000 \rightarrow 2750\ t = 15\ 000 \rightarrow t = 5.5$ years

Answers are rounded

- e) Since it loses \$2750 per year, $$2750 \cdot 2.5$ years = \$6875 lost every 2.5 years
- f) The rate of change of value is the slope: \$2750 per year

Example 4:

Georgia sells computers. She is paid a basic monthly salary of \$1500, plus \$400 for every **five** computers she sells.

- a) Write a formula for Georgia's monthly wage.
- b) How many computers must be sold for Georgia to make at least \$3440 in one month?
- c) Determine Georgia's wage in a month when she sells 60 computers
- d) What is the rate of change of Georgia's wage with respect to the number of computers sold?

Solution 4:

a)
$$\frac{\Delta y}{\Delta x} = \frac{400 - 0}{5 - 0} = \$80$$
/computer So, $W = 1500 + 80x$

b) $W = 1500 + 80x = 3440 \rightarrow 80x = 1940 \rightarrow x = 24.25$

Georgia must sell 25 computers

c)
$$W = 1500 + 80(60) = $6300$$

d) The rate of change is the slope: \$80 per computer

Example 5:

In the morning, Anna types **nine pages** in 45 minutes. After lunch, she typed **15 pages** in 1 hour and 20 minutes. If the pages typed were approximately the same length, did she type faster in the morning or after lunch?

Solution 5:

Determine the rate in the morning

 $\frac{9 \, pages}{45 \, minutes} = 0.2 \, pages/min$

Determine the rate after lunch

 $\frac{15 \ pages}{80 \ minutes} = 0.1875 \ pages/min$

Therefore, Anna typed **faster in the morning**.

Section 2.2b – Practice Problems

EMERGING LEVEL QUESTIONS

Fill in the blank with the appropriate word

- 1. The run between two points on a coordinate system refers to change in the ______ variable
- 2. The rise between two points on a coordinate system refers to change in the ______ variable
- 3. The letter _____ is used to indicate the slope of a line
- 4. The formula for finding the slope of a line is ______
- 5. The slope of a vertical line is ______
- 6. The slope of a horizontal line is _____
- 7. A _____ has **both** the x-coordinates **and** y-coordinates increasing
- 8. A _____ has either the x-coordinates or y-coordinates decreasing
- 9. _____ represents a rate of change

10. Match the column on the left with the column on the right

a) rise	i) $x = 3$	
b) run	ii) difference in <i>x</i>	
c) slope	iii)	
d) vertical line	iv) difference in y	
e) horizontal line	v) $y = -1$	

Determine if the slope is positive, negative, zero, or undefined.

Determine the slope of the line

PROFICIENT LEVEL QUESTIONS

Find the slope from the points provided

21. (2,3) and (6,9)	22. (3, 2) and (7, 10)
22 (-15) and (41)	24(2,2) and $(2,-2)$
23. $(-1, 3)$ and $(+, 1)$	24. $(2, 2)$ and $(2, -2)$
25. $(2, -1)$ and $(-5, -1)$	26. $(-3, 1)$ and $(6, 8)$

EXTENDING LEVEL QUESTIONS

27. A long-distance runner passes the 24km mark of a race in 1hr 20 min, and passes the 42km mark 1 hour later. Assuming a constant rate, find the speed of the long-distance runner in km/hr.

28. A plane at an altitude of 20 000 feet starts to descend for landing after flying for six hours. The entire flight time was 6 hours and 40 minutes. Determine the average rate of descent of the plane in ft/min.

29. As a window washer begins work on a high rise with 120 windows, one-third of the windows were already clean. Eight hours later, three-quarters of all the windows are clean. Calculate the window washer's cleaning rate in windows per hour.

30. A five-foot-long treadmill rises 15 inches to make an incline for running. What is the slope of the treadmill?

Section 2.2b – Answer Key

1.	x
2.	У
3.	т
4.	$y_2 - y_1$
F	$x_2 - x_1$
э. с	ondenned
о. 7	U Docitivo
7. o	Negative
о. а	Slope
9. 10	Slope
10.	a) iv)
	b) ii)
	c) iii)
	d) i)
	e) v)
11.	Positive
12.	0
13.	Undefined
14.	Negative
15.	m = -3
16.	$m = \frac{1}{5}$
17.	m = 4
18.	$m = -\frac{1}{4}$
19.	m = 0
20.	Undefined
21.	$m = \frac{3}{2}$
22.	m = 2
23.	$m = -\frac{4}{5}$
24.	Undefined
25.	m = 0
26.	$m = \frac{7}{9}$
27.	18km/hr
28.	500ft/min
29.	6.5window/hr
30.	0.26inch/inch