Section 2.3 - Arithmetic Sequence and Series

This booklet belongs to: \qquad Block: \qquad

A Sequence

- A sequence is simply a list of numbers
- Each number in the list is called a Term
- They are listed: first term, second term, third term, and so on...
- Sequences can be finite (they end) or infinite (they don't end)

Unlike graphing equations and using function notation of x and y values sequences use script notation.

Example:

Term 1 is known as:	a_{1}	or	t_{1}
Term 2 is known as:	a_{2}	or	t_{2}
Term 3 is known as:	a_{3}	or	t_{3}

\qquad
The $n^{\text {th }}$ is known as: a_{n} or t_{n}

- Depending on the resource, some people use a other use t when denoting the first term.
- n refers to whichever number you want to input

Sequence

A finite sequence is a function for which the domain (\boldsymbol{x} - values) is a subset of the natural numbers:
$\{1,2,3, \ldots, n\}$ for some finite number n

An infinite sequence is function for which the domain (\boldsymbol{x} - values) is the set of natural numbers: $\{1,2,3, \ldots\}$

Example 1: Write the first four terms of the sequence
a) $a_{n}=\frac{n+1}{n}$
b) $\quad b_{n}=2 n-3$
c) $t_{n}=2^{n}$

Solution 1:

a) $a_{1}=\frac{1+1}{1}=2, \quad a_{2}=\frac{2+1}{2}=\frac{3}{2}, \quad a_{3}=\frac{3+1}{3}=\frac{4}{3}, \quad a_{4}=\frac{4+1}{4}=\frac{5}{4}$
b) $b_{1}=2(1)-3=-1, \quad b_{2}=(2)(2)-3=1, \quad b_{3}=(2)(3)-3=3, \quad b_{4}=(2)(4)-3=5$
c) $t_{1}=2^{1}=2, \quad t_{2}=2^{2}=4, \quad t_{3}=2^{3}=8, \quad t_{4}=2^{4}=16$

Arithmetic Sequence

- When we have a sequence in which the successive terms have a common difference, the sequence is called and arithmetic sequence
- For example, the sequence, $3,7,11,15, \ldots$ has a common difference of 4 . Every next term is achieved by adding 4 to the term previous.
- The common difference, \boldsymbol{d}, of this sequence is 4 .

If we look at the pattern we may see something helpful...
$1^{\text {st }}$ term: $\quad a_{1}=a_{1}$
$2^{\text {nd }}$ term: $\quad \boldsymbol{a}_{\mathbf{2}}=\boldsymbol{a}_{\mathbf{1}}+\boldsymbol{d}$
$3^{\text {rd }}$ term: $\quad \boldsymbol{a}_{3}=\boldsymbol{a}_{2}+d=\left(\boldsymbol{a}_{1}+\boldsymbol{d}\right)+d=\boldsymbol{a}_{1}+\mathbf{2 d}$

We are able to express every term with respect to the first term and the common difference!
$4^{\text {th }}$ term: $\quad \boldsymbol{a}_{\mathbf{4}}=\boldsymbol{a}_{\mathbf{3}}+d=\left(\boldsymbol{a}_{\mathbf{1}}+2 \boldsymbol{d}\right)+d=\boldsymbol{a}_{\mathbf{1}}+\mathbf{3} \boldsymbol{d}$

- From this pattern we are able to generate the general equation of an Arithmetic Sequence

The $\boldsymbol{n}^{\text {th }}$ term of an Arithmetic Sequence

- For an arithmetic sequence $\left\{\boldsymbol{t}_{\boldsymbol{n}}\right\}$ whose first term is \boldsymbol{a}, with a common difference \boldsymbol{d} :

$$
\boldsymbol{t}_{\boldsymbol{n}}=\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d} \quad \text { for any integer } n \geq 1
$$

Example 2: For each arithmetic sequence, identity the common difference.
a) $3,5,7,9, \ldots$
b) $11,8,5,2, \ldots$

Solution 2:

a) $5-3=2$,
$7-5=2, \quad 9-7=2$,
Therefore $d=2$
b) $8-11=-3$,
$5-8=-3$,
$2-5=-3$,
Therefore $d=-3$

Example 3: \quad Determine if the sequence $\left\{t_{n}\right\}=\{3-2 n\}$ is arithmetic
Solution 3: $\quad t_{1}=3-2(1)=1$

$$
\begin{aligned}
& t_{2}=3-2(2)=-1 \\
& t_{3}=3-2(3)=-3
\end{aligned}
$$

$1,-1,-3, \ldots$ has a common difference of -2
So, the sequence is arithmetic!

Example 4: Find the $12^{\text {th }}$ term of the arithmetic sequence $2,5,8, \ldots$
Solution 4:

$$
\begin{aligned}
& a=2 \quad d=3 \\
& t_{n}=a+(n-1) d \\
& t_{12}=2+(12-1) 3 \quad \rightarrow \quad 35
\end{aligned}
$$

Example 5: Which term in the arithmetic sequence $4,7,10, \ldots$ has a value of 439 ?
Solution 5: $\quad d=7-4=3$

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& 439=4+(n-1) 3 \\
& 435=(n-1) 3 \quad \rightarrow \quad 145=n-1 \\
& n=146 \quad \text { The } 146^{\text {th }} \text { term is } 439 \text {. }
\end{aligned}
$$

Example 6: \quad The $7^{\text {th }}$ term of an arithmetic sequence is 78 , and the $18^{\text {th }}$ term is 45 . Find the $1^{\text {st }}$ term.

Solution 6:

There are $18-7=\mathbf{1 1}$ terms between 45 and 78. And the difference between them is $\mathbf{4 5} \mathbf{- 7 8}=\mathbf{- 3 3}$

So,

$$
11 d=-33 \rightarrow \quad d=-3
$$

$$
\text { So, } \quad t_{n}=a+(n-1) d
$$

This gets us the common
difference by using the gap
in all the terms we missed.

$t_{7}=a+(7-1)(-3)$
$78=a+(-18)$
$78+18=a=96$

Example 7: \quad Find x so that $3 x+2,2 x-3$, and $2-4 x$ are consecutive terms of an arithmetic sequence

Solution 7:

Since they are consecutive,

$$
(2 x-3)-(3 x+2)=d \quad \text { and } \quad(2-4 x)-(2 x-3)=d
$$

So, since they both equal d, we can set them equal to each other.

$$
\begin{gathered}
(2 x-3)-(3 x+2)=(2-4 x)-(2 x-3) \\
2 x-3-3 x-2=2-4 x-2 x+3 \\
-x-5=-6 x+5 \quad \rightarrow \quad 5 x=10 \quad \rightarrow \quad x=2
\end{gathered}
$$

Once you have x, you can then work backwards to determine d and the first three terms.
$(2 x-3)-(3 x+2)=d \quad \rightarrow \quad(2(2)-3)-(3(2)+2)=d \quad \rightarrow \quad 1-8=d \quad \rightarrow \quad \boldsymbol{d}=-7$

$$
\begin{aligned}
& 3 x+2 \rightarrow 3(2)+2=8 \\
& 2 x-3 \rightarrow 2(2)-3=1 \\
& 2-4 x \rightarrow 2-4(2)=-6
\end{aligned}
$$

First 3 terms are: $\quad 8,1,-6$

Arithmetic Series

- An arithmetic series is when we take our given sequence and we add it all together (sum)
- We have finite and infinite sums just like we have for sequences, but we're only going to look at finite series
- Here's the formula:

Sum of an Arithmetic Series

- The sum of the first n terms of an arithmetic series is given by:

$$
S_{n}=\frac{n}{2}(a+l) \quad \text { or } \quad S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

Where $a=$ the first term, $\quad l=$ the last term, \quad and $d=$ the common difference

- We can interchange the two equations, depending on what information is given to us
- Then it really just becomes plug by numbers

Example 8: \quad Find the sum of the positive integers from 1 to 50 inclusive.

Solution 8:

$$
\begin{gathered}
a=1, \quad l=50, \quad d=1 \quad \begin{array}{l}
\text { Since we have } \boldsymbol{a} \text { and } \boldsymbol{l} \text { we know } \\
S_{n}=\frac{n}{2}(a+l) \\
S_{50}=\frac{50}{2}(1+50)
\end{array} \quad \rightarrow \quad 25(51) \quad \rightarrow \quad 1275
\end{gathered}
$$

Example 9: \quad Find the sum of the first 25 terms of the series $11+15+19+\cdots$
Solution 9: \quad The series is arithmetic (has a common difference) with $a=11, d=4$, and $n=25$

$$
\begin{gathered}
S_{n}=\frac{n}{2}(2 a+(n-1) d) \\
S_{25}=\frac{25}{2}(2(11)+(25-1) 4) \rightarrow \quad \begin{array}{l}
\text { Since we don't know } l \text { we kno } \\
\text { we have to use this one. }
\end{array} \\
\hdashline 12.5(22+96) \rightarrow-
\end{gathered}
$$

Example 10: Find the sum of the series $7+10+13+\cdots+100$.
Solution 10: $\quad a=7, l=100, d=3$
but We don't know \boldsymbol{n}, so we solve for that first

To find \boldsymbol{n} we use the formula from Section $\mathbf{2 . 2}$

$$
t_{n}=a+(n-1) d
$$

Since we want to know how many terms there are and 100 is the last term, if we solve for that we'll get n.

$$
\begin{gathered}
100=7+(n-1)(3) \\
\rightarrow 100=7+3 n-3 \\
\rightarrow 100=4+3 n \\
\rightarrow 96=3 n \\
n=32
\end{gathered}
$$

Now we can solve for the sum since we know n

$$
\begin{gathered}
S_{n}=\frac{n}{2}(a+l) \\
S_{32}=\frac{32}{2}(7+100) \\
S_{32}=16(107) \\
S_{32}=1712
\end{gathered}
$$

Example 11: Find the sum of the $5+9+13+\cdots+137$
Solution 11: $\quad a=5, l=137, d=4 \quad$ but \quad We don't know n, so we solve for that first

To find \boldsymbol{n} we use the formula from Section $\mathbf{2 . 2}$

$$
t_{n}=a+(n-1) d
$$

Since we want to know how many terms there are and 137 is the last term, if we solve for that we'll get n.

$$
\begin{gathered}
137=5+(n-1)(4) \\
\rightarrow 137=5+4 n-4 \\
\rightarrow 137=1+4 n \\
\rightarrow 136=4 n \\
n=34
\end{gathered}
$$

$$
\begin{gathered}
S_{n}=\frac{n}{2}(a+l) \\
S_{34}=\frac{34}{2}(5+137) \\
S_{34}=17(142) \\
S_{34}=2414
\end{gathered}
$$

Section 2.3 - Practice Problems EMERGING LEVEL QUESTIONS

Write the first four terms of each of the following sequences

Find the indicated arithmetic term
7. $a=5, d=3$, find t_{12}
8. $\quad a=\frac{2}{3}, d=-\frac{1}{4}$, find t_{9}
9. $a=-\frac{3}{4}, d=\frac{1}{2}$, find t_{10}
11. $a=-0.75, d=0.05$, find t_{40}
10. $a=2.5, d=-1.25$, find t_{20}
12. $a=-\frac{7}{4}, d=-\frac{2}{3}$, find t_{37}

Find the number of terms in each arithmetic sequence
13.

$$
a=6, d=-3, t_{n}=-30
$$

14.

$$
a=-3, d=5, t_{n}=82
$$

15. $a=0.6, d=0.2, t_{n}=9.2$
16. $-1,4,9, \ldots, 159$
17.
18. $\quad 23,20,17, \ldots,-100$

PROFICIENT LEVEL QUESTIONS

Find the first term in the arithmetic sequence
19. 6th term is $10 ; 18$ th term is 46
20. 4 th term is $2 ; 18$ th term is 30
21. 9 th term is $23 ; 17$ th term is -1
23. 13 th term is $-3 ; 20$ th term is -17
24. 11th term is $37 ; 26$ th term is 32

Find the sum of the arithmetic series

EXTENDING LEVEL QUESTIONS

Find the indicated value using the information given
33. S_{20}, if $a_{1}=8, a_{20}=65$
35. S_{56}, if $a_{56}=13, d=-9$
36. n if $S_{n}=180, a_{1}=4, t_{n}=16$
37. d, if $S_{40}=680, a_{1}=11$
39. S_{19}, if $d=4, a_{19}=17$
38. S_{62}, if $a_{1}=10, d=3$
40. S_{40}, if $d=-3, a_{40}=65$

Section 2.3 - Answer Key

1. $-1,2,7,14$
2. $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$
3. $1,-4,9,-16$
4. $1, \frac{9}{5}, 3, \frac{81}{17}$
5. $2,1, \frac{8}{9}, 1$
6. $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}$
7. $t_{12}=38$
8. $t_{9}=-\frac{4}{3}$
9. $t_{10}=\frac{15}{4}$
10. $t_{20}=-21.25$
11. $t_{40}=1.2$
12. $t_{37}=-25.75$
13. $n=13$
14. $n=18$
15. $n=44$
16. $n=18$
17. $n=33$
18. $n=42$
19. $a=-5$
20. $a=-4$
21. $a=47$
22. $a=15$
23. $a=21$
24. $a=40 \frac{1}{3}$
25. $n^{2}+2 n$
26. $\frac{3 n^{2}}{2}-\frac{5 n}{2}$
27. $S_{26}=1027$
28. $S_{24}=1224$
29. $S_{98}=24500$
30. $S_{13}=338 \sqrt{5}$
31. $S_{10}=120$
32. $S_{83}=-11703$
33. $S_{20}=730$
34. $S_{21}=798$
35. $S_{56}=14588$
36. $n=18$
37. $d=\frac{4}{13}$
38. $S_{63}=6293$
39. $S_{19}=-361$
40. $S_{40}=4940$

Extra Work Space

