Section 2.3 – Arithmetic Sequence and Series

This booklet belongs to:______Block: _____

A Sequence

- A sequence is simply a list of numbers
- Each number in the list is called a Term
- They are listed: first term, second term, third term, and so on...
- Sequences can be finite (they end) or infinite (they don't end)

Unlike graphing equations and using function notation of *x* and *y* values sequences use script notation.

Example:

Term 1 is known as:	a_1	or	t_1	
Term 2 is known as:	<i>a</i> ₂	or	t_2	
Term 3 is known as:	<i>a</i> ₃	or	t_3	
The n^{th} is known as:	a_n	or	t_n	

•	Depending on the resource, some people use a
	other use t when denoting the first term.
•	n refers to whichever number you want to input

Sequence

A **finite sequence** is a function for which the *domain* (x - values) is a subset of the natural numbers: $\{1, 2, 3, ..., n\}$ for some finite number n

An **infinite sequence** is function for which the *domain* (x - values) is the set of natural numbers: {1, 2, 3, ...}

Example 1: Write the first four terms of the sequence

a) $a_n = \frac{n+1}{n}$ b) $b_n = 2n-3$ c) $t_n = 2^n$

Solution 1:

- a) $a_1 = \frac{1+1}{1} = 2$, $a_2 = \frac{2+1}{2} = \frac{3}{2}$, $a_3 = \frac{3+1}{3} = \frac{4}{3}$, $a_4 = \frac{4+1}{4} = \frac{5}{4}$
- b) $b_1 = 2(1) 3 = -1$, $b_2 = (2)(2) 3 = 1$, $b_3 = (2)(3) 3 = 3$, $b_4 = (2)(4) 3 = 5$
- c) $t_1 = 2^1 = 2$, $t_2 = 2^2 = 4$, $t_3 = 2^3 = 8$, $t_4 = 2^4 = 16$

Arithmetic Sequence

- When we have a **sequence in which the successive terms** have a **common difference**, the sequence is called and **arithmetic sequence**
- For example, the sequence, 3, 7, 11, 15, ... has a **common difference** of 4. Every next term is achieved **by** adding 4 to the term previous.
- The common difference, *d*, of this sequence is 4.

If we look at the pattern we may see something helpful...

1st term: $a_1 = a_1$ 2^{nd} term: $a_2 = a_1 + d$ 3^{rd} term: $a_3 = a_2 + d = (a_1 + d) + d = a_1 + 2d$ 4^{th} term: $a_4 = a_3 + d = (a_1 + 2d) + d = a_1 + 3d$

• From this pattern we are able to generate the general equation of an Arithmetic Sequence

The n^{th} term of an Arithmetic Sequence

• For an arithmetic sequence $\{t_n\}$ whose first term is a, with a common difference d:

 $t_n = a + (n - 1)d$ for any integer $n \ge 1$

Example 2: For each arithmetic sequence, identity the common difference.

- a) 3, 5, 7, 9, ...
- b) 11, 8, 5, 2, ...

Solution 2:

a) 5-3=2,7-5=2,9-7=2,Therefore d=2b) 8-11=-3,5-8=-3,2-5=-3,Therefore d=-3

Example 3:	Determine if the sequence $\{t$	${n}_{n} = \{3 - 2n\}$ is arithmetic	
Solution 3:	$t_1 = 3 - 2(1) = 1$	$1, -1, -3, \dots$ has a common difference of -2	
	$t_2 = 3 - 2(2) = -1$	So, the sequence is arithmetic!	
	$t_3 = 3 - 2(3) = -3$		į

Example 4: Find the 12th term of the arithmetic sequence 2, 5, 8, ...

Solution 4:

$$a = 2 \qquad d = 3$$

$$t_n = a + (n-1)d$$

$$t_{12} = 2 + (12 - 1)3 \qquad \rightarrow \qquad 35$$

Example 5: Which term in the arithmetic sequence 4, 7, 10, ... has a value of 439?

Solution 5:

$$d = 7 - 4 = 3$$

$$t_n = a + (n - 1)d$$

$$439 = 4 + (n - 1)3$$

$$435 = (n - 1)3 \rightarrow 145 = n - 1$$

$$n = 146$$
 The 146th term is 439.

Example 6: The 7th term of an arithmetic sequence is 78, and the 18th term is 45. Find the 1st term.

Solution 6:

There are 18 - 7 = 11 terms between 45 and 78. And the difference between them is 45 - 78 = -33

So,

Example 7: Find x so that 3x + 2, 2x - 3, and 2 - 4x are consecutive terms of an arithmetic sequence

Solution 7:

Since they are consecutive,

(2x-3) - (3x+2) = d and (2-4x) - (2x-3) = d

So, since they both equal d, we can set them equal to each other.

(2x-3) - (3x+2) = (2-4x) - (2x-3)

2x - 3 - 3x - 2 = 2 - 4x - 2x + 3

 $-x-5 = -6x+5 \rightarrow 5x = 10 \rightarrow x = 2$

Once you have x, you can then work backwards to determine d and the first three terms.

 $(2x-3) - (3x+2) = d \rightarrow (2(2)-3) - (3(2)+2) = d \rightarrow 1-8 = d \rightarrow d = -7$

First 3 terms are: 8, 1, -6

Arithmetic Series

- An arithmetic series is when we take our given sequence and we add it all together (sum)
- We have **finite and infinite sums** just like we have for sequences, but we're only going to look at **finite series**
- Here's the formula:

Sum of an Arithmetic Series

• The sum of the first *n* terms of an arithmetic series is given by:

$$S_n = \frac{n}{2}(a+l)$$
 or $S_n = \frac{n}{2}(2a+(n-1)d)$

Where a = the first term, l = the last term, and d = the common difference

- We can interchange the two equations, depending on what information is given to us
- Then it really just becomes plug by numbers

Example 8: Find the sum of the positive integers from 1 to 50 inclusive.

Solution 8:

$$a = 1, \quad l = 50, \quad d = 1$$

$$S_n = \frac{n}{2}(a+l)$$
Since we have *a* and *l* we know we can use this one.

$$S_{50} = \frac{50}{2}(1+50) \quad \rightarrow \quad 25(51) \quad \rightarrow \quad 1275$$

Example 9: Find the sum of the first 25 terms of the series $11 + 15 + 19 + \cdots$

Solution 9: The series is arithmetic (has a common difference) with a = 11, d = 4, and n = 25

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

Since we **don't know** *l* we know
we have to use this one.
$$S_{25} = \frac{25}{2}(2(11) + (25 - 1)4) \rightarrow 12.5(22 + 96) \rightarrow 1475$$

Example 10: Find the sum of the series $7 + 10 + 13 + \dots + 100$.

Solution 10: a = 7, l = 100, d = 3

but We **don't know** *n*, so we solve for that first Now we can solve for the sum since we know n

$$t_n = a + (n-1)d$$

Since we want to know how many terms there are and **100 is the last term**, if we solve for that we'll get *n*.

$$100 = 7 + (n - 1)(3)$$

$$\rightarrow 100 = 7 + 3n - 3$$

$$\rightarrow 100 = 4 + 3n$$

$$S_{32} = \frac{32}{2}(7 + 100)$$

$$S_{32} = 16(107)$$

$$S_{32} = 16(107)$$

$$S_{32} = 1712$$

Example 11: Find the sum of the $5 + 9 + 13 + \dots + 137$

Solution 11: *a* = 5, *l* = 137, *d* = 4 but We don't know n, so we solve for that first Now we can solve for the sum since we know n

To find *n* we use the formula from Section 2.2

$$t_n = a + (n-1)d$$

Since we want to know how many terms there are and **137 is the last term**, if we solve for that we'll get *n*.

$$137 = 5 + (n - 1)(4)$$

 $\rightarrow 137 = 5 + 4n - 4$
 $\rightarrow 137 = 1 + 4n$
 $\rightarrow 136 = 4n$
 $n = 34$

$$S_{34} = 17(142)$$

 $S_{34} = 2414$

 $S_n = \frac{n}{2}(a+l)$

 $S_n = \frac{n}{2}(a+l)$

 $S_{34} = \frac{34}{2}(5+137)$

Section 2.3 – Practice Problems

EMERGING LEVEL QUESTIONS

Write the first four terms of each of the following sequences

1. $\{n^2 - 2\}$	2. $\left\{\frac{n+2}{n+1}\right\}$
3. $\{(-1)^{n+1}n^2\}$	$4. \left\{ \frac{3^n}{2^{n+1}} \right\}$
5. $\left\{\frac{2^n}{n^2}\right\}$	$6. \left\{ \left(\frac{2}{3}\right)^n \right\}$

Find the indicated arithmetic term

7. $a = 5, d = 3, find t_{12}$

8.
$$a = \frac{2}{3}, d = -\frac{1}{4}, find t_9$$

9.
$$a = -\frac{3}{4}, d = \frac{1}{2}, find t_{10}$$

10. $a = 2.5, d = -1.25, find t_{20}$
11. $a = -0.75, d = 0.05, find t_{40}$
12. $a = -\frac{7}{4}, d = -\frac{2}{3}, find t_{37}$

Find the number of terms in each arithmetic sequence

13.
$$a = 6, d = -3, t_n = -30$$
 14. $a = -3, d = 5, t_n = 82$

15.	$a = 0.6, d = 0.2, t_n = 9.2$	16.	$a = -0.3, d = -2.3, t_n = -39.4$
17.	-1, 4, 9, , 159	18.	23, 20, 17, , -100

PROFICIENT LEVEL QUESTIONS

Find the first term in the arithmetic sequence

19. 6th term is 10; 18th term is 46

20. 4th term is 2; 18th term is 30

21.	9th term is 23; 17th term is –1	22.	5th term is 3; 25th term is —57
23.	13th term is –3; 20th term is –17	24.	11th term is 37; 26th term is 32

Find the sum of the arithmetic series

25.	$3 + 5 + 7 + \dots + (2n + 1)$	26.	$-1 + 2 + 5 + \dots + (3n - 4)$
27.	2 + 5 + 8 + … + 77	28.	5 + 9 + 13 + … + 97
29.	(-41) + (-35) + (-29) + … + 541	30.	$2\sqrt{5} + 6\sqrt{5} + 10\sqrt{5} + \dots + 50\sqrt{5}$
31.	39 + 33 + 27 + … + (-15)	32.	23 + 19 + 15+,,, +(-305)

EXTENDING LEVEL QUESTIONS

Find the indicated value using the information given

33.	$S_{20}, if a_1 = 8, a_{20} = 65$	34.	$S_{21}, if a_1 = 8, a_{20} = 65$
35.	$S_{56}, if a_{56} = 13, d = -9$	36.	$n \ if \ S_n = 180, a_1 = 4, t_n = 16$

37.	$d, if S_{40} = 680, a_1 = 11$	38.	$S_{62}, if a_1 = 10, d = 3$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , <i>if</i> $d = -3$, $a_{40} = 65$
39.	$S_{19}, if \ d = 4, a_{19} = 17$	40.	S_{40} , <i>if</i> $d = -3$, $a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , <i>if</i> $d = -3$, $a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	$S_{40}, if d = -3, a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	$S_{40}, if d = -3, a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , <i>if</i> $d = -3$, $a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	$S_{40}, if d = -3, a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , <i>if</i> $d = -3$, $a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , <i>if</i> $d = -3$, $a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , if $d = -3$, $a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , <i>if</i> $d = -3$, $a_{40} = 65$
39.	$S_{19}, if d = 4, a_{19} = 17$	40.	S_{40} , if $d = -3$, $a_{40} = 65$

Section 2.3 – Answer Key

1. $-1, 2, 7, 14$ 2. $\frac{3}{2}, \frac{4}{3}, \frac{5}{9}, \frac{6}{5}$ 3. $1, -4, 9, -16$ 4. $1, \frac{9}{5}, 3, \frac{81}{17}$ 5. $2, 1, \frac{8}{9}, 1$ 6. $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}$ 7. $t_{12} = 38$ 8. $t_9 = -\frac{4}{3}$ 9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 25. $n^2 + 2n$ 26. $\frac{3n^2}{2} - \frac{5n}{2}$ 27. $S_{26} = 1027$ 28. $S_{24} = 1224$ 29. $S_{98} = 24500$ 30. $S_{13} = 338\sqrt{5}$ 31. $S_{10} = 120$ 32. $S_{83} = -11703$ 33. $S_{20} = 730$ 34. $S_{21} = 798$ 35. $S_{56} = 14588$ 36. $n = 18$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$			
2. $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$ 3. $1, -4, 9, -16$ 4. $1, \frac{9}{5}, 3, \frac{81}{17}$ 5. $2, 1, \frac{8}{9}, 1$ 6. $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}$ 7. $t_{12} = 38$ 8. $t_9 = -\frac{4}{3}$ 9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 26. $\frac{3n^2}{2} - \frac{5n}{2}$ 27. $S_{26} = 1027$ 28. $S_{24} = 1224$ 29. $S_{98} = 24500$ 30. $S_{13} = 338\sqrt{5}$ 31. $S_{10} = 120$ 32. $S_{83} = -11703$ 33. $S_{20} = 730$ 34. $S_{21} = 798$ 35. $S_{56} = 14588$ 36. $n = 18$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$	1.	-1, 2, 7, 14	25. $n^2 + 2n$
3. $1, -4, 9, -16$ 4. $1, \frac{9}{5}, 3, \frac{81}{17}$ 5. $2, 1, \frac{8}{9}, 1$ 6. $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}$ 7. $t_{12} = 38$ 8. $t_9 = -\frac{4}{3}$ 9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 27. $S_{26} = 1027$ 28. $S_{24} = 1224$ 29. $S_{98} = 24500$ 30. $S_{13} = 338\sqrt{5}$ 31. $S_{10} = 120$ 32. $S_{83} = -11703$ 33. $S_{20} = 730$ 34. $S_{21} = 798$ 35. $S_{56} = 14588$ 36. $n = 18$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$	2.	$\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$	26. $\frac{3n^2}{3n^2} - \frac{5n}{3n^2}$
4. $1, \frac{9}{5}, 3, \frac{81}{17}$ 5. $2, 1, \frac{8}{9}, 1$ 6. $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}$ 7. $t_{12} = 38$ 8. $t_9 = -\frac{4}{3}$ 9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	3.	1, -4, 9, -16	$27 S_{26} = 1027$
5. $2, 1, \frac{8}{9}, 1$ 6. $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}$ 7. $t_{12} = 38$ 8. $t_9 = -\frac{4}{3}$ 9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 29. $S_{98} = 24500$ 30. $S_{13} = 338\sqrt{5}$ 31. $S_{10} = 120$ 32. $S_{83} = -11703$ 33. $S_{20} = 730$ 34. $S_{21} = 798$ 35. $S_{56} = 14588$ 36. $n = 18$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$	4.	$1, \frac{9}{5}, 3, \frac{81}{17}$	28. $S_{24} = 1224$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.	$2, 1, \frac{8}{2}, 1$	29. $S_{98} = 24500$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$\frac{2}{2} \frac{4}{8} \frac{8}{16}$	30. $S_{13} = 338\sqrt{5}$
7. $t_{12} = 38$ 8. $t_9 = -\frac{4}{3}$ 9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 32. $S_{83} = -11703$ 33. $S_{20} = 730$ 34. $S_{21} = 798$ 35. $S_{56} = 14588$ 36. $n = 18$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$	0.	3'9'27'81	31. $S_{10} = 120$
8. $t_9 = -\frac{4}{3}$ 9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 33. $S_{20} = 730$ 34. $S_{21} = 798$ 35. $S_{56} = 14588$ 36. $n = 18$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$	7.	$t_{12} = 38$	32. $S_{83} = -11703$
9. $t_{10} = \frac{15}{4}$ 10. $t_{20} = -21.25$ 11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 34. $S_{21} = 798$ 35. $S_{56} = 14588$ 36. $n = 18$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$	8.	$t_9 = -\frac{4}{3}$	33. $S_{20} = 730$
$\begin{array}{c} 35. S_{56} = 14\ 588\\ 36. n = 18\\ 37. d = \frac{4}{13}\\ 38. S_{63} = 6293\\ 39. S_{19} = -361\\ 40. S_{40} = 4940\\ 39. S_{40} = 4940\\ 39. S_{40} = 4940\\ 40. S_{40} = 494\\ 40. S_{40} = $	9.	$t_{10} = \frac{15}{10}$	34. $S_{21} = 798$
10. $t_{20}21.23$ 36. $n = 18$ 11. $t_{40} = 1.2$ 37. $d = \frac{4}{13}$ 12. $t_{37} = -25.75$ 38. $S_{63} = 6293$ 13. $n = 13$ 39. $S_{19} = -361$ 14. $n = 18$ 40. $S_{40} = 4940$ 15. $n = 44$ 40. $S_{40} = 4940$ 16. $n = 18$ 40. $S_{40} = 4940$ 17. $n = 33$ 40. $S_{40} = 4940$ 18. $n = 42$ 40. $S_{40} = 4940$ 19. $a = -5$ 40. $S_{40} = 4940$ 21. $a = 47$ 40. $S_{40} = 4940$ 22. $a = 15$ 40. $S_{40} = 4940$ 24. $a = 40\frac{1}{3}$ 40. $S_{40} = 4940$	10	4 + - 212E	35. $S_{56} = 14588$
11. $t_{40} = 1.2$ 12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$ 37. $d = \frac{4}{13}$ 38. $S_{63} = 6293$ 39. $S_{19} = -361$ 40. $S_{40} = 4940$	10.	$t_{20} = -21.25$	36. $n = 18$
12. $t_{37} = -25.75$ 13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	11.	$l_{40} = 1.2$	37. $d = \frac{4}{12}$
13. $n = 13$ 14. $n = 18$ 15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	12.	$t_{37} = -25.75$	13
14. $n = 18$ 39. $S_{19} = -301$ 15. $n = 44$ 40. $S_{40} = 4940$ 16. $n = 18$ 40. $S_{40} = 4940$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	13.	n = 13	$36. 5_{63} = 0275$
15. $n = 44$ 16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	14.	n = 18	$39. 3_{19} = -301$
16. $n = 18$ 17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	15.	n = 44	40. $S_{40} = 4940$
17. $n = 33$ 18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	16.	<i>n</i> = 18	
18. $n = 42$ 19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	17.	<i>n</i> = 33	
19. $a = -5$ 20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	18.	<i>n</i> = 42	
20. $a = -4$ 21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	19.	a = -5	
21. $a = 47$ 22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	20.	a = -4	
22. $a = 15$ 23. $a = 21$ 24. $a = 40\frac{1}{3}$	21.	a = 47	
23. $a = 21$ 24. $a = 40\frac{1}{3}$	22.	a = 15	
24. $a = 40\frac{1}{3}$	23.	<i>a</i> = 21	
	24.	$a = 40\frac{1}{3}$	

Extra Work Space