Section 3.1a - The Three Forms of Linear Equations

This booklet belongs to: \qquad Block: \qquad

Standard Form and General Form of a Linear Equation

- If A, B, and C are real numbers, the equation $\boldsymbol{A x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$ is called the STANDARD FORM of the equation of a line.
- It is best to write the equation with A, B, and C as integers, and $\boldsymbol{A} \geq \mathbf{0}$ (Not Negative).
- Standard Form was introduced in Grade 9 and won't be used much longer
- The GENERAL FORM: $\boldsymbol{A x}+\boldsymbol{B y}+\boldsymbol{C}=\mathbf{0}$ is a more appropriate form since moving forward we will want our Linear Equations equal to $\mathbf{0}$
- So, the transformation from Standard to General Form is a simple one:
- Get ALL THE TERMS on the same side of the equal sign

Standard Form	General Form
$\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$	$\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}+\boldsymbol{C}=\mathbf{0}$
A, B, C are Integers, $A>0$	A, B, C are Integers, $A>0$

Example 1: Write the following in General Form

$$
-3 x+y=4 \quad \text { and } \quad \frac{2}{3} x+2 y=3
$$

Solution 1:

$-\mathbf{3 x}+\boldsymbol{y}=\mathbf{4}$	can be expressed as:	$3 x-y=-4 \leftarrow$ multiply all terms by (-1)
$3 x-y=-4$	can be expressed as:	$\mathbf{3 x - y + 4}=\mathbf{0} \leftarrow$ add 4 to both sides
$\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{x}+\mathbf{2 y}=\mathbf{y}$	can be expressed as:	$2 x+6 y=9 \leftarrow$ multiply each term by (3)
$2 x+6 y=9$	can be expressed as:	$\mathbf{2 x + 6 \boldsymbol { y } - \mathbf { 9 } = \mathbf { 0 } \leftarrow \text { subtract } 9 \text { from both sides }}$

Slope-Intercept Form of a Linear Equation

- The equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ is the SLOPE-INTERCEPT FORM of the equation of a line.
- The \boldsymbol{y} - intercept of the line is $(\mathbf{0}, \boldsymbol{b})$, and the slope of the line is \boldsymbol{m}.
- The algebra of STANDARD FORM to SLOPE-INTERCEPT FORM is as follows:

$$
A x+B y=C \quad \rightarrow \quad B y=-A x+C \quad \rightarrow \quad y=-\frac{A}{B} x+\frac{C}{B}
$$

- The slope of $A x+B y=C$
is $\quad-\frac{A}{B}$
- The \boldsymbol{y} - intercept of $A x+B y=C$ is

$$
\frac{C}{B} \rightarrow\left(0, \frac{C}{B}\right)
$$

SLOPE-INTERCEPT FORM

$$
y=m x+b
$$

Example 2: Convert $-2 x-3 y=12$ to Slope-Intercept Form and then Graph the Linear Equation

Solution 2:

$$
\begin{gathered}
-2 x-3 y=12 \quad \text { so... }-3 y=2 x+12 \quad \text { so... } y=\frac{2 x+12}{-3} \\
\text { so... } y=-\frac{2}{3} x-4
\end{gathered}
$$

- The slope of the line is: $\frac{\mathbf{2}}{\mathbf{3}}$ and the \boldsymbol{y} - intercept is $(\mathbf{0},-\mathbf{4})$
- Once you do the algebra it's easy to map
- Plot the y-intercept
- Trace your slope
- Map the next point
- Continue that process and connect the points with a line

Graphing a Line Using the Slope and the y-Intercept

Step 1: Write the equation in SLOPE INTERCEPT FORM by solving for y
Step 2: Identify the \boldsymbol{y}-intercept $(\mathbf{0}, \boldsymbol{b})$, and graph this point
Step 3: Graph a second point using the slope, starting at the y - intercept
Step 4: Draw a line connecting the points to obtain the graph

Example 3:

Graph: $\quad 3 x+2 y=12 \quad$ by using the slope and $y-$ intercept

Solution 3:

Step 1:
$3 x+2 y=12 \quad$ so... $2 y=-3 x+12$
so... $\quad y=-\frac{3}{2} x+6$
Step 2: \quad The y-intercept is $(0,6)$: mark this point
Step 3: \quad The slope is $m=\frac{\text { rise }}{r u n}=-\frac{3}{2}$
From (0,6), go down 3 units and to the right 2 units, to obtain the point $(2,3)$.

Repeat that step as many times as you want.
Step 4: \quad Draw a line through the points

$$
(0,6),(2,3) \text { and }(4,0)
$$

A Note About Slope

When you have a slope, it's a fraction.

So, if it's negative: $\quad-\frac{3}{2}=\frac{-3}{2}=\frac{3}{-2}$

- You can go DOWN and RIGHT or UP and LEFT

So, if it's positive: $\quad \frac{3}{2}=\frac{3}{2}=\frac{-3}{-2}$

- You can go UP and RIGHT or DOWN and LEFT

Graphing a Line Using the Slope and a Point

Step 1: \quad Locate and graph the given point.
Step 2: Graph another point tracing the slope, counting from the first point
Step 3: Repeat that step again
Step 4: Draw a line connecting the three points to obtain the graph

Example 4:

Graph the line through $(-2,-4)$ with slope $\frac{3}{1}$.

Solution 4:

The slope is 3 , so from the point $(-2,-4)$ go up 3 units, and to the right 1 unit to get the next point $(-1,-1)$. Repeat tracing the slope from the new point $(-1,-1)$.

Writing an Equation of a Line Using a Slope and a Point

- By substituting given values for a slope and a point (x, y) of a line into $y=m x+b$, the line's equation can be found!

Example 5:

Write the equation of the line with slope 2 that runs through $(-4,1)$ in slope intercept $-\boldsymbol{f o r m}$.

Solution 5:

The point $(-4,1)$ gives us an $x-$ value of -4 and a $y-v a l u e$ of 1 .
So, $\quad y=m x+b \rightarrow$
$1=2(-4)+b$
$1=-8+b$
$b=9$
Therefore, the equation of the line is... $\boldsymbol{y}=2 \boldsymbol{x}+\mathbf{9}$

Point-Slope Form of a Linear Equation

- The equation $y-y_{1}=m\left(x-x_{1}\right)$ is the POINT-SLOPE EQUATION of a line.
- The given point is $\left(x_{1}, y_{1}\right)$ and the slope of the line is m
- This formula comes from rearranging the definition of the slope, $m=\frac{y-y_{1}}{x-x_{1}}$

POINT-SLOPE EQUATION

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Example 6:

Write the equation of a line with slope 2 that passes through $(-4,1)$ in Slope-intercept form.

Solution 6: $y-y_{1}=m\left(x-x_{1}\right) \quad \rightarrow \quad y-1=2(x-(-4))$

$$
\begin{aligned}
& y-1=2(x+4) \\
& y-1=2 x+8 \\
& y=2 x+9
\end{aligned}
$$

Example 7:

Write the equation of a line with slope $\frac{4}{5}$ that passes through $(3,-2)$ in Standard form.
Solution 7: $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\rightarrow \quad \begin{aligned}
& y-(-2)=\frac{4}{5}(x-3) \\
& y+2=\frac{4}{5}(x-3) \\
& 5(y+2)=4(x-3) \\
& 5 y+10=4 x-12 \\
& 4 x-5 y=22
\end{aligned}
$$

Section 3.1a - Practice Problems
 EMERGING LEVEL QUESTIONS

Complete each statement

1. The formula for the Point-Slope form of a line is \qquad
2. In the equation $y=m x+b,(\mathbf{0}, \boldsymbol{b})$ is called the \qquad
3. The equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ is called the \qquad form
4. The Standard form of the equation of a line is \qquad

Find the slope and the y-intercept

Rewrite the Standard Form Equation in Slope-Intercept Form
11. $2 x+y=6$
12. $3 x-y=4$
13. $4 x+3 y=12$
14. $2 x-3 y=6$
15. $5 x+4 y=3$
16. $6 x-3 y=4$

Rewrite the Slope-Intercept Equation in Standard Form
17. $y=-2 x+1$
18. $y=3 x-1$
19. $y=3 x$
20. $y=-\frac{2}{3} x+1$
21. $y=\frac{3}{4} x+5$
22. $y=-\frac{2}{5} x+\frac{1}{2}$

PROFICIENT LEVEL QUESTIONS

Rewrite the Point-Slope Equation in Slope-Intercept Form
23. $y-2=3(x+1)$
24. $y+4=-2(x-1)$
25. $y-1=\frac{1}{3}(x+2)$
27. $y-\frac{2}{3}=\frac{1}{4}(x-8)$
26. $y+4=-\frac{2}{5}(x-3)$
28. $y-\frac{1}{4}=\frac{1}{2}\left(x+\frac{2}{3}\right)$

Rewrite the Point-Slope Equation in Standard Form
29. $y-2=3(x+1)$
30. $y+4=-2(x-1)$
31. $y-1=\frac{1}{3}(x+2)$
32. $y+4=-\frac{2}{5}(x-3)$
33. $y-\frac{2}{3}=\frac{1}{4}(x-8)$
34. $y-\frac{1}{4}=\frac{1}{2}\left(x+\frac{2}{3}\right)$

EMERGING LEVEL QUESTIONS

Write the equation of each line in slope-intercept form
35. $(0,2) ; m=2$
36. $(0,-3) ; m=\frac{1}{2}$
37. $(0,3) ; m=0$
38. $(0,-2) ; m=-\frac{2}{3}$
39. $\left(0,-\frac{1}{2}\right) ; m=-\frac{3}{4}$

Graph the Linear Equations
41. $4 x-3 y=12$

42. $y=-\frac{2}{3} x+4$

PROFICIENT LEVEL QUESTIONS

43. $y-3=\frac{1}{2}(x+4)$

44. $y+2=-\frac{2}{3}(x+5)$

45. $2 x+3 y=10$

46. $5 x-2 y=0$

EXTENDING LEVEL QUESTIONS

47. $y-\frac{5}{2}=-\frac{1}{2}\left(x+\frac{3}{2}\right)$

48. $y=\frac{5}{3} x-\frac{7}{2}$

Section 3.1a - Answer Key

1. $y-y_{1}=m\left(x-x_{1}\right)$
2. See Website
3. y-intercept
4. See Website
5. Slope-Intercept
6. $A x+B y=C$
7. Slope: $\frac{3}{2} ; y$-int: -3
8. Slope: $-\frac{4}{3} ; y$-int: 4
9. Slope: $\frac{2}{5} ; y$-int: $\frac{7}{5}$
10. Slope: $-\frac{5}{2} ; y$-int: 0
11. Slope: $\frac{1}{4} ; y$-int: 1
12. Slope: 6; y-int: 3
13. $y=-2 x+6$
14. $y=3 x-4$
15. $y=-\frac{4}{3} x+4$
16. $y=\frac{2}{3} x-2$
17. $y=-\frac{5}{4}+\frac{3}{4}$
18. $y=2 x-\frac{4}{3}$
19. $2 x+y=1$
20. $3 x-y=1$
21. $3 x-y=0$
22. $2 x+3 y=3$
23. $3 x-4 y=-20$
24. $4 x+10 y=5$
25. $y=3 x+5$
26. $y=-2 x-2$
27. $y=\frac{1}{3} x+\frac{5}{3}$
28. $y=-\frac{2}{5} x-\frac{14}{5}$
29. $y=\frac{1}{4} x-\frac{4}{3}$
30. $y=\frac{1}{2} x+\frac{7}{12}$
31. $3 x-y=-5$
32. $2 x+y=-2$
33. $x-3 y=-5$
34. $2 x+5 y=-14$
35. $3 x-12 y=16$
36. $6 x-12 y=-7$
37. $y=2 x+2$
38. $y=\frac{1}{2} x-3$
39. $y=3$
40. $y=-\frac{2}{3} x-2$
41. $y=-\frac{3}{4} x-\frac{1}{2}$
42. $y=0.4 x+2.3$
43. See Website

Extra Work Space

