Section 3.1b – Special Cases of Linear Equations

This booklet belongs to:______Block: _____

Horizontal Lines

- A horizontal line can be thought of as **all the points** on the graph where y has the same value
- The *slope* of a horizontal line *is* **0** (The rise is 0).
- Using a slope of 0, the slope intercept equation of a line is:

y = mx + b \rightarrow y = 0(x) + b \rightarrow y = b

Equation of a Horizontal Line with y-intercept (0, b)

y = b

Vertical Lines

- A vertical line can be thought of as **all the points** on the graph where *x* has the same value
- The *slope* of a vertical line *is undefined* (The run is 0).
- The equation of a vertical line is x = a by definition, since the slope is undefined.

x = a

Example of Vertical Line x = 3

Writing the Equation of a Line Through Two Points

• When two points are given, we now have the ability to write the equation of a line

Example 1: Write the equation of a line passing through A(5, 2) and B(1, -4) in *slope* – *intercept form*.

Solution 1:

- First find the slope of the line. $m = \frac{y_2 y_1}{x_2 x_1} = \frac{2 (-4)}{5 1} = \frac{6}{4} = \frac{3}{2}$
- Now pick either point and substitute it into the *point slope equation*.

$$y - y_{1} = m(x - x_{1}) \rightarrow y - 2 = \frac{3}{2}(x - 5)$$

$$\rightarrow y - 2 = \frac{3}{2}x - \frac{15}{2}$$

$$\rightarrow y = \frac{3}{2}x - \frac{15}{2} + 2 \rightarrow y = \frac{3}{2}x - \frac{15}{2} + \frac{4}{2}$$

$$\rightarrow y = \frac{3}{2}x - \frac{11}{2}$$

• You get the same answer if you use the other point

$$y - y_{1} = m(x - x_{1}) \rightarrow y - (-4) = \frac{3}{2}(x - 1)$$

$$\rightarrow y + 4 = \frac{3}{2}x - \frac{3}{2}$$

$$\rightarrow y = \frac{3}{2}x - \frac{3}{2} - 4 \rightarrow y = \frac{3}{2}x - \frac{3}{2} - \frac{8}{2}$$

$$\rightarrow y = \frac{3}{2}x - \frac{11}{2}$$

- So, find the *Slope* first
- Then **substitute** in **either** one of the points for (x_1, y_1)
- Use algebra to get to *slope intercept form*
- You can then continue the algebra to get to general form

Parallel and Perpendicular Lines

- Parallel lines have the *same slopes* but different *y intercepts*
- Perpendicular lines have slopes that are *negative reciprocals* of each other
- Knowing this we can determine if equations are parallel, perpendicular of neither

Example 2: In the following system of equations, determine if the lines are parallel, perpendicular or neither.

$$\begin{array}{r} x + 2y = 6\\ -2x + y = 3 \end{array}$$

Solution 2:

• The short cut is remembering the slope of the **Standard Form** of a line, Ax + By = C, is: $-\frac{A}{B}$

x + 2y = 6 has a slope of $-\frac{1}{2}$ -2x + y = 3 has a slope of 2

The slopes are negative reciprocals of each other, so the lines are perpendicular.

• I don't like relying on things to remember so it is important to be able to manipulate the equations using algebra to go from *Standard Form to Slope – Intercept Form*

Example 3: In the following system of equations, determine if the lines are parallel, perpendicular, or neither.

$$3x - y = 5$$
$$-6x + 2y = 12$$

Solution 3:

• Put both equations into *Slope – intercept Form*

3x - y = 5	\rightarrow	-y = -3x + 5	\rightarrow	$y = 3x - 5 \rightarrow$	m = 3
-6x + 2y = 12	\rightarrow	2y = 6x + 12	\rightarrow	$y = 3x + 6 \rightarrow$	m = 3

The **slopes** are **equal**, so the lines are **parallel**.

Foundations and Pre-Calculus 10

Example 4: In the following system of equations, determine if the lines are parallel, perpendicular, or neither.

$$4x + 3y = 7$$
$$2x - 4y = 4$$

Solution 4:

• Using the **Standard Form** shortcut (Slope is $-\frac{A}{B}$):

\triangleright	4x + 3y = 7	has a slope of	$-\frac{4}{3}$
\triangleright	2x - y = 4	has a slope of	2

• Changing the system of equations to Slope-intercept form:

$4x + 3y = 7 \rightarrow$	3 <i>y</i> =	$x = -4x + 7 \rightarrow$	<i>y</i> =	$-\frac{4}{3}x + \frac{7}{3} \rightarrow$	$m = -\frac{4}{3}$	
2x - y = 4	\rightarrow	-y = -2x + 4	\rightarrow	y = 2x - 4	\rightarrow	m = 2

Both methods produce the same result.

The slopes aren't the same, or negative reciprocals of one another, so the lines are neither parallel nor perpendicular.

Section 3.1b – Practice Problems

EMERGING LEVEL QUESTIONS

Determine the equation of the graph and explain why.

Determine the equation of a line through the given pair of points.

3. (-4,1) <i>and</i> (6,1)	4. (1, -4) <i>and</i> (1, 6)
5. (-2,0) <i>and</i> (5,0)	6. $(0, -2)$ and $(0, 5)$
7. (a,b)and(c,b)	8. (b, a) and (b, c)

Write the equation of the line with the given information

9. vertical, passes through (3,6)	10. vertical, passes through (-2, -4)
11. horizontal, passes through (3,6)	12. horinzontal, passes through (-2, -4)

PROFICIENT LEVEL QUESTIONS

For each pair of equations, determine whether they are parallel, perpendicular, or neither

13. $2x + 5y = 7$	and	4x + 10y = 2	14.	-4x + 3y = 7	and	-8x + 6y = 0
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4
15. $4x - 3y = 6$	and	4x + 6y = -3	16.	3x - 5y = 4	and	5x - 3y = 4

17. $4x - 3y = 5$	and	3x + 4y = 2	18. $2x - 5y = -3$	and	10x + 4y = 1
19. $4x - y = 3$	and	x - 4y = -2	20. $5x - 2y = 7$	and	2x + 5y = 7

Write the equation of a line passing though the given set of points in *slope – intercept form*

while the equation of a line passing though the give	
21. (3,5) <i>and</i> (2,4)	22. $(5, -2)$ and $(-3, 1)$
23. (-4,1)and(-2,-3)	24. $(-1, -2)$ and $(-6, -4)$
25. $(6, -2)$ and $(-3, 2)$	26. $(0,0)$ and $(-3,2)$

EXTENDING LEVEL QUESTIONS

With the information provided, use reasoning to answer the following questions

27. If a line is horizontal, what is the slope of any line perpendicular to it?	28. If the graph of a linear equation has one point that is both the x – intercept and y – intercept, where is that point?
29. What is the equation of the $x - axis$?	30. What is the equation of the $y - axis$?
31. What is the x - intercept of the line ax + by = c?	32. What is the <i>slope</i> of the line $ax + by = c$?

Section 3.1b – Answer Key

Г

1.	<i>y</i> = 3
2.	x = -5
3.	y = 1
4.	y = 1 $x = 1$
5.	y = 0
6.	x = 0
	y = b
	x = b
	x = 3
	x = -2
	y = 6
	y = -4
	Parallel
	Parallel
	Neither
	Neither
	Perpendicular
18.	Perpendicular
19.	Neither
20.	Perpendicular
21.	y = x + 2
22.	$y = -\frac{3}{8}x - \frac{1}{8}$
23.	y = -2x - 7
24.	$y = -2x - 7$ $y = \frac{2}{5}x - \frac{8}{5}$ 4
25.	$y = -\frac{4}{9}x + \frac{2}{3}$ $y = -\frac{2}{3}x$
26.	$y = -\frac{2}{3}x$
27.	Undefined
28.	(0,0)
29.	y = 0
30.	x = 0
31.	$x = \frac{c}{a}$
32.	$-\frac{a}{b}$

Extra Work Space