Section 3.1b - Special Cases of Linear Equations

This booklet belongs to:

\qquad Block: \qquad

Horizontal Lines

- A horizontal line can be thought of as all the points on the graph where y has the same value
- The slope of a horizontal line is $\mathbf{0}$ (The rise is 0).
- Using a slope of 0 , the slope intercept equation of a line is:

$$
\mathrm{y}=m x+b \quad \rightarrow \quad y=0(x)+b \quad \rightarrow \quad y=b
$$

Equation of a Horizontal Line with \boldsymbol{y}-intercept $(\mathbf{0}, \boldsymbol{b})$

$$
y=b
$$

Vertical Lines

- A vertical line can be thought of as all the points on the graph where x has the same value
- The slope of a vertical line is undefined (The run is 0).
- The equation of a vertical line is $x=a$ by definition, since the slope is undefined.

$$
\begin{aligned}
& \text { Equation of a Vertical Line with } x \text { - intercept }(a, 0) \\
& \qquad x=a
\end{aligned}
$$

Example of Horizontal Line $\boldsymbol{y}=\mathbf{3}$

Example of Vertical Line $\boldsymbol{x}=\mathbf{3}$

Writing the Equation of a Line Through Two Points

- When two points are given, we now have the ability to write the equation of a line

Example 1: \quad Write the equation of a line passing through $A(5,2)$ and $B(1,-4)$ in slope - intercept form.

Solution 1:

- First find the slope of the line. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-(-4)}{5-1}=\frac{6}{4}=\frac{3}{2}$
- Now pick either point and substitute it into the point - slope equation.

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) & \rightarrow \\
& y-2=\frac{3}{2}(x-5) \\
& \rightarrow \quad y-2=\frac{3}{2} x-\frac{15}{2} \\
& \rightarrow \quad y=\frac{3}{2} x-\frac{15}{2}+2 \quad \rightarrow \quad y=\frac{3}{2} x-\frac{15}{2}+\frac{4}{2} \\
& y=\frac{3}{2} x-\frac{11}{2}
\end{aligned}
$$

- You get the same answer if you use the other point

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) & \rightarrow \\
& \rightarrow \quad y-(-4)=\frac{3}{2}(x-1) \\
& \rightarrow \quad y+4=\frac{3}{2} x-\frac{3}{2} \\
& \rightarrow \quad y=\frac{3}{2} x-\frac{3}{2}-4 \quad \rightarrow \quad y=\frac{3}{2} x-\frac{3}{2}-\frac{8}{2} \\
& y=\frac{3}{2} x-\frac{11}{2}
\end{aligned}
$$

- So, find the Slope first
- Then substitute in either one of the points for $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$
- Use algebra to get to slope - intercept form
- You can then continue the algebra to get to general form

Parallel and Perpendicular Lines

- Parallel lines have the same slopes but different y-intercepts
- Perpendicular lines have slopes that are negative reciprocals of each other
- Knowing this we can determine if equations are parallel, perpendicular of neither

Example 2: In the following system of equations, determine if the lines are parallel, perpendicular or neither.

$$
\begin{array}{r}
x+2 y=6 \\
-2 x+y=3
\end{array}
$$

Solution 2:

- The short cut is remembering the slope of the Standard Form of a line,

$$
A x+B y=C, \text { is: }-\frac{A}{B}
$$

$x+2 y=6$ has a slope of $-\frac{\mathbf{1}}{\mathbf{2}} \quad-2 x+y=3$ has a slope of $\mathbf{2}$
The slopes are negative reciprocals of each other, so the lines are perpendicular.

- I don't like relying on things to remember so it is important to be able to manipulate the equations using algebra to go from Standard Form to Slope - Intercept Form

Example 3: In the following system of equations, determine if the lines are parallel, perpendicular, or neither.

$$
\begin{aligned}
3 x-y & =5 \\
-6 x+2 y & =12
\end{aligned}
$$

Solution 3:

- Put both equations into Slope - intercept Form

$3 x-y=5$	\rightarrow	$-y=-3 x+5$	$m=3$
$-6 x+2 y=12$	\rightarrow	$2 y=6 x+12$	=

The slopes are equal, so the lines are parallel.

Example 4: In the following system of equations, determine if the lines are parallel, perpendicular, or neither.

$$
\begin{array}{r}
4 x+3 y=7 \\
2 x-4 y=4
\end{array}
$$

Solution 4:

- Using the Standard Form shortcut (Slope is $-\frac{A}{B}$):
$>4 x+3 y=7$
$>2 x-y=4$
has a slope of $-\frac{4}{3}$
has a slope of 2
- Changing the system of equations to Slope-intercept form:
$4 x+3 y=7 \rightarrow \quad 3 y=-4 x+7 \quad \rightarrow \quad y=-\frac{4}{3} x+\frac{7}{3} \rightarrow \quad \boldsymbol{m}=-\frac{\mathbf{4}}{\mathbf{3}}$
$2 x-y=4 \quad \rightarrow \quad-y=-2 x+4 \quad \rightarrow \quad y=2 x-4 \quad \rightarrow \quad \boldsymbol{m}=\mathbf{2}$

Both methods produce the same result.
The slopes aren't the same, or negative reciprocals of one another, so the lines are neither parallel nor perpendicular.

Section 3.1b - Practice Problems

EMERGING LEVEL QUESTIONS

Determine the equation of the graph and explain why.

Equation:
Why:
2.

Equation:
Why:

Determine the equation of a line through the given pair of points.
3. $(-4,1)$ and $(6,1)$
4. $(1,-4) \operatorname{and}(1,6)$
6. $(0,-2)$ and $(0,5)$
7. (a, b) and (c, b)
8. $(b, a) \operatorname{and}(b, c)$

Write the equation of the line with the given information

9. vertical, passes through $(3,6)$	10. vertical, passes through $(-2,-4)$
11. horizontal, passes through $(3,6)$	12. horinzontal, passes through $(-2,-4)$

PROFICIENT LEVEL QUESTIONS

For each pair of equations, determine whether they are parallel, perpendicular, or neither
13. $2 x+5 y=7$ and $4 x+10 y=2$
14. $-4 x+3 y=7 \quad$ and $\quad-8 x+6 y=0$
15. $4 x-3 y=6$ and $4 x+6 y=-3 \quad$ 16. $3 x-5 y=4 \quad$ and $\quad 5 x-3 y=4$
17. $4 x-3 y=5 \quad$ and $\quad 3 x+4 y=2$
18. $2 x-5 y=-3$ and $10 x+4 y=1$
19. $4 x-y=3$ and $\quad x-4 y=-2 \quad$ 20. $5 x-2 y=7$ and $2 x+5 y=7$

Write the equation of a line passing though the given set of points in slope - intercept form
21. $(3,5)$ and $(2,4)$
23. $(-4,1)$ and $(-2,-3)$
24. $(-1,-2)$ and $(-6,-4)$
25. $(6,-2)$ and $(-3,2)$
26. $(0,0)$ and $(-3,2)$

EXTENDING LEVEL QUESTIONS

With the information provided, use reasoning to answer the following questions
27. If a line is horizontal, what is the slope of any line perpendicular to it?
28. If the graph of a linear equation has one point that is both the x-intercept and y-intercept, where is that point?
29. What is the equation of the x-axis?
31. What is the x - intercept of the line $a x+b y=c$?
32. What is the slope of the line $a x+b y=c$?

Section 3.1b - Answer Key

1. $y=3$
2. $x=-5$
3. $y=1$
4. $x=1$
5. $y=0$
6. $x=0$
7. $y=b$
8. $x=b$
9. $x=3$
10. $x=-2$
11. $y=6$
12. $y=-4$
13. Parallel
14. Parallel
15. Neither
16. Neither
17. Perpendicular
18. Perpendicular
19. Neither
20. Perpendicular
21. $y=x+2$
22. $y=-\frac{3}{8} x-\frac{1}{8}$
23. $y=-2 x-7$
24. $y=\frac{2}{5} x-\frac{8}{5}$
25. $y=-\frac{4}{9} x+\frac{2}{3}$
26. $y=-\frac{2}{3} x$
27. Undefined
28. $(0,0)$
29. $y=0$
30. $x=0$
31. $x=\frac{c}{a}$
32. $-\frac{a}{b}$

Extra Work Space

