## Section 4.1a - Solving Linear Systems by Graphing

 This booklet belongs to: $\qquad$ Block: $\qquad$> If you think back to Grade 9, we talked about SOLUTIONS to equations of lines
$>$ These were the $(x, y)$ coordinates that satisfied the Slope-Intercept or Standard Form Equation
> What it did was kept the equation equal when we plugged in the values, see below:

## Standard Form

## Example 1:

- Does the line, $3 x-2 y=-6$ go through the point $(2,6)$ ?


## Solution 1:

- In other words,
- The $(2,6)$ a solution to the equation $3 x-2 y=-6$ ?
- So, sub in $\mathbf{2}$ for $\boldsymbol{x}$ and $\mathbf{6}$ for $\boldsymbol{y}$

$$
\begin{aligned}
3(2)-2(6) & =-6 \\
6-12 & =-6 \\
-6 & =-6
\end{aligned}
$$

Yes, it is a solution; the line goes through the point!

## Slope-Intercept Form

## Example 2:

- Does the line $y=2 x+5$ go through the point $(1,8)$ ?


## Solution 2:

- In other words,
- The $(1,8)$ a solution to the equation $y=2 x+5$
- So, sub in 1 for $x$ and 8 for $y$
$8=2(1)+5 \quad \rightarrow \quad 8=2+5 \quad \rightarrow \quad 8=7$

Since $8 \neq 7$ it is NOT a solution; the line goes DOES NOT go through the point!
$>$ So, the only difference in a SYSTEM of EQUATIONS is that we are looking for that $(x, y)$ point that satisfies 2 or more equations at the same time.
> We can do this in a number of different ways, graphing will be discussed first.
$>$ Graphing a system of linear equations shows a visual picture of the problem and a solution to the system
$>$ A linear system may have NO solutions, ONE solution, or INFINITE solutions

| One Solution | No Solutions | Infinite Solutions |
| :---: | :---: | :---: |
|  |  |  |
| The graphs of two linear equations intersect at one point. There is one solution that is called a consistent system of independent equations. | The graphs of two linear equations are parallel lines. There is no solution, and the system is called inconsistent. | The graphs of the two linear equations are the same line. There are an infinite number of solutions to the system, because any ordered pair satisfies both equations. This is a consistent system of dependent equations. |

## Solving a Linear System by Graphing

1. Rewrite each equation in either SLOPE-INTERCEPT OR STANDARD FORM
2. Graph both equations on the same grid
3. Identify the point of intersection of the two graphs. The solution is ordered pair of the point of intersection.
4. Check the solution algebraically by substituting the ordered pair into each equation of the original system.
5. Label the point of intersection

Example 1: $\quad$ Solve the System: $x+2 y=-4$ and $x-y=5$ by graphing.

## Solution 1:

$x+2 y=-4$

$$
x-y=5
$$

| $x$ | $y$ |
| :---: | :---: |
| 0 | -2 |
| -4 | 0 |
| 4 | -4 |


| $x$ | $y$ |
| :---: | :---: |
| 0 | -5 |
| 5 | 0 |
| 2 | -3 |

Graphing the two lines shows an intersection at $(2,-3)$


Therefore, the solution to the system is $(2,-3)$

Example 2: $\quad$ Solve the system: $2 x-3 y=3$ and $-2 x+3 y=6$ by graphing
Solution 2: Let's look at graphing by changing the equations to Slope-Intercept Form

$$
\begin{array}{cr}
\mathbf{2 x}-\mathbf{3} \boldsymbol{y}=\mathbf{3} & -2 x+3 y=6 \\
-3 y=-2 x+3 & 3 y=2 x+6 \\
y=\frac{-2}{-3} x+\frac{3}{-3} & y=\frac{2}{3} x+\frac{6}{3} \\
y=\frac{2}{3} x-1 & y=\frac{2}{3} x+2 \\
\boldsymbol{m}=\frac{2}{3} & \boldsymbol{m}=\frac{2}{3}
\end{array}
$$

Graphing the two lines shows no intersection point.
Therefore, there is no solution to the system of equations.

## Example 3: $\quad$ Solve the system: $2 x-y=4$ and $-4 x+2 y=-8$ by graphing

## Solution 3:

$$
\begin{array}{cc}
2 x-y=4 & -4 x+2 y= \\
m=2 & m=2
\end{array}
$$

| $x$ | $y$ |
| :---: | :---: |
| 0 | -4 |
| 2 | 0 |
| -1 | -6 |


| $x$ | $y$ |
| :---: | :---: |
| 0 | -4 |
| 2 | 0 |
| -1 | -6 |


$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\frac{0-(-4)}{2-0}$
$\frac{4}{2}$
$m=2$
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\frac{0-(-4)}{2-0}$
$\frac{4}{2}$
$m=2$

Graphing the two lines shows infinite intersection points.
Therefore, there are an infinite number of solutions to the system of equations.

You may need to use all of your tools to accurately graph your equations. Perfect Intersection points are key. Graph: $x-y=5$ and $3 x+2 y=5$

This equation is easy. We can find the x-int and $y$-int quite easily.

Slope intercept form gives us: $\quad y=-\frac{3}{2} x+\frac{5}{2}$
We get the slope! But the y-intercept is an estimate. So, can we find a point?
x-intercept is also an estimate, so we have to look a little closer. Can you see a point that satisfies the equation? $\rightarrow \quad(1,1)$


## Section 4.1a - Practice Problems

## EMERGING LEVEL QUESTIONS

Determine whether the ordered pairs are a solution to the linear system

1. $3 x+y=17$ and $2 x+3 y=17 ;(5,2)$
2. $2 x+y=11$ and $3 x+2 y=19$; $(3,5)$
3. $4 x=72-y$ and $3 x=-7 y-4 ;(6,-2)$
4. $-2 y=x+10$ and $3 x=6 y-6 ;(-6,-2) \quad$ 6. $x=2$ and $y=3 ;(3,2)$

## PROFICIENT LEVEL QUESTIONS

7. $\frac{1}{2} x+\frac{1}{3} y=4$ and $\frac{1}{4} x+\frac{1}{3} y=3 ;(4,6)$

Solve by graphing
9. $2 x-y=3$ and $x+y=3$

8. $0.3 x-0.2 y=4$ and $0.2 x+0.3 y=1$; $\left(\frac{140}{13}, \frac{-50}{13}\right)$
10. $x+2 y=-4$ and $y=-\frac{1}{2} x+1$

11. $f(x)=2 x-4$ and $2 x-y=4$

12. $x+y=-5$ and $-2 x+1=1$

13. $2 x-3 y=-1$ and $4 x-y=3$

14. $x-\frac{y}{2}=-3$ and $\frac{x}{3}-y=-1$

15. $x=4$ and $3 x-2 y=6$

16. $2 x-\frac{3}{2} y=1$ and $f(x)=-2$

17. $f(x)=-x-1$ and $4 x-3 y=17$

18. $a-2 b=-8$ and $b-a=6$


## EXTENDING LEVEL QUESTIONS

19. Write a system of equations with the given solution.
a) $(3,-2)$
b) No solution
c) Infinite Solution

## Section 4.1a - Answer Key

| 1. | No |
| :--- | :--- |
| 2. | Yes |
| 3. | No |
| 4. | No |
| 5. | Yes |
| 6. | No |
| 7. | Yes |
| 8. | Yes |
| 9. | $(2,1)$ |
| 10. | No Solution |
| 11. | Infinite |
| 12. | $(0,-5)$ |
| 13. | $(1,1)$ |
| 14. | $(-3,0)$ |
| 15. | $(4,3)$ |
| 16. | $(-1,-2)$ |
| 17. | $(2,-3)$ |
| 18. | $(-4,2)$ |
| 19. | Answers Vary |
| ( See Website |  |

## Extra Work Space

