Section 4.1b – Solving Linear Systems Using Addition

This booklet belongs to:______Block: _____

- Solving a system by **graphing is limited** by the accuracy of the graph
- When the intersection point is not an exact integer, it is difficult to determine the coordinates from the graph
- Solving a system algebraically **does not depend on a graph**, and always gives **exact coordinates**
- The method used to solve a system algebraically is an extension of the addition property used to solve an equation for a single variable

Rule of Addition

For all real numbers a, b, c and d; if a = b, and c = d, then a + c = b + d

Solving a Linear System by the Addition Method

- 1. Write the equations of the system in **STANDARD FORM**: Ax + By = C
- 2. **Multiply** the terms of one equation, **or both** of the equations, by a **constant** such that the coefficients of *x* or *y* are **different only in their sign**
- 3. Add the equations, and solve the resulting equation
- 4. **Substitute** the value obtained in step 3 into **either** of the **original equations**, and solve for the remaining variable
- 5. Steps 3 and 4 give the solution to the system
- 6. To check the solution, take the values from steps 3 and 4, and substitute them into the **equation not used** in step 4.

Example 1: Solve: x + y = 6 and x - y = 4

Solution 1:

 $\begin{array}{l} x + y = 6\\ \underline{x - y} = 4\\ 2x &= 10 \qquad \rightarrow \qquad x = 5\\ \text{To find } y \text{, substitute } x = 5 \text{ in one of the original equations.}\\ x + y = 6 \qquad \rightarrow \qquad 5 + y = 6 \qquad \rightarrow \qquad y = 1 \end{array}$

<u>Check:</u> Substitute (5, 1) into the equation not used, $x - y = 4 \rightarrow 5 - 1 = 4$ **True!**

The solution to the system is (5, 1)

Example 2: Solve: y = x + 4 and x + 2y = 5

Solution 2: Rewrite y = x + 4 as -x + y = 4

$$-x + y = 4$$

$$x + 2y = 5$$

$$3y = 9 \rightarrow y = 3$$

To find x, substitute y = 3 in one of the original equations.

 $x + 2y = 5 \rightarrow x + 2(3) = 5 \rightarrow x = -1$

<u>Check:</u> Substitute (-1, 3) into the equation not used,

 $y = x + 4 \rightarrow 3 = -1 + 4$ True!

The solution to the system is (-1, 3)

Example 3: Solve: 2x - 3y = 2 and x + 2y = 8

Solution 3: To obtain coefficients for x that differ only in sign, multiply the second equation by -2Add the results to obtain an equation that has only one variable y.

2x - 3y = 2 -2(x + 2y = 8) $\xrightarrow{2x - 3y = 2}$ -2x - 4y = -16 -7y = -14 $\xrightarrow{y = 2}$

To find x, substitute y = 2 in one of the original equations.

 $x + 2y = 8 \rightarrow x + 2(2) = 8 \rightarrow x = 4$

<u>Check:</u> Substitute (4, 2) in to $2x - 3y = 2 \rightarrow 2(4) - 3(2) = 2 \rightarrow 2 = 2$ **True!**

The solution to the system is (4, 2)

Example 4:	Solve: $4x + 3y = 5$	and	3x-2y = 8
------------	----------------------	-----	-----------

Solution 4: Multiply Equation 1 by 2 and Equation 2 by 3, then add the results

2(4x + 3y = 5)	_	8x + 6y = 10						
3(3x-2y = 8)		9x - 6y	= 24					
		17 <i>x</i>	= 34	\rightarrow	x = 2			

To find y, substitute x = 2 in one of the original equations.

 $4x + 3y = 5 \rightarrow 4(2) + 3y = 5 \rightarrow 3y = -3 \rightarrow y = -1$

<u>Check:</u> Substitute (2, -1) in to $3x - 2y = 8 \rightarrow 3(2) - 2(-1) = 8 \rightarrow 8 = 8$ **True!**

The solution to the system is (2, -1)

Example 5: Solve: 3x - 2y = 1 and -6x + 4y = 3

Solution 5: Multiply Equation one by 2, then add the results.

$$2(3x - 2y = 1) \qquad \rightarrow \qquad 6x - 4y = 2$$

$$-6x + 4y = 3 \qquad \rightarrow \qquad -6x + 4y = 3$$

$$0 = 5$$

There is no solution so the lines are PARALLEL

Example 6: Solve: 2x + 5y = 2 and -4x - 10y = -4

Solution 6: Multiply Equation one by 2, then add the results

2(2x + 5y = 2)		4x + 10y = 4
-4x - 10y = -4	\rightarrow	-4x - 10y = 4
		0 = 0

There are infinite solutions so the lines are the SAME

Section 4.1b – Practice Problems

Solve by the Addition Method

1. $x - y = 4$ and $x + y = -6$	2. $x - 2y = -1$ and $-x + y = 1$
3. $x + 2y = 3$ and $x - y = 6$	4. $3x - 2y = -5$ and $3x + y = -11$

PROFICENT LEVEL QUESTIONS

5.	x = 3y and y = 5x + 14	6.	3x - 11 = 8y and $x + 6y - 8 = 0$
7.	3x + 5y = 17 and $4x - y = -8$	8.	4x + 3y = 1 and $3x + 2y = 2$

9. $7x - 3y = -5$ and $3x + 5y = -21$	10. $5x + 2y = 8$ and $3x + 5y = 20$
11 $5x - 2y - 105$ and $2x + 5y2$	12 $2x - 2y - 6$ and $-6x + 4y6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$
11. $5x - 3y = 10.5$ and $2x + 5y = -2$	12. $3x - 2y = 6$ and $-6x + 4y = -6$

13.
$$3x - 2y = 6$$
 and $-6x + 4y = -12$

14.
$$\frac{x}{3} + \frac{y}{4} = 1$$
 and $\frac{x}{2} - \frac{y}{8} = \frac{7}{2}$

EXTENDING LEVEL QUESTIONS

15. $\frac{3}{x} + \frac{4}{y} = \frac{5}{2}$ and $-\frac{5}{x} + \frac{3}{y} = -\frac{7}{4}$

16.
$$\frac{6}{x} - \frac{9}{y} = 3$$
 and $\frac{5}{x} - \frac{6}{y} = 2$

17. $0.1x + 0.01y = 0.73$ and $0.2x + 0.05y = 1.55$	18. $0.02x + \frac{y}{2} = 0.4$ and $\frac{x}{2} - 0.4y = -2.9$
19. $\frac{x}{2} + \frac{y}{5} = \frac{4}{5}$ and $\frac{x}{6} - \frac{y}{2} = \frac{5}{6}$	20. $\frac{x}{4} - \frac{y}{2} = \frac{7}{24}$ and $\frac{x}{3} + \frac{y}{2} = 0$

Section 4.1b – Answer Key

1.	(-1,-5)
2.	(-1,0)
3.	(5, -1)
4.	(-3, -2)
5.	(-3, -1)
6.	$\left(5,\frac{1}{2}\right)$
7.	(-1,4)
8.	(4, -5)
9.	(-2, -3)
10.	(0,4)
11.	$\left(\frac{3}{2},-1\right)$
12.	No Solution
13.	Infinite Solutions
14.	(6, -4)
15.	(2,4)
16.	No Solution
17.	(7,3)
18.	(-5,1)
19.	(2, -1)
20.	$\left(\frac{1}{2},-\frac{1}{3}\right)$

Extra Work Space