Section 4.1b - Solving Linear Systems Using Addition

This booklet belongs to: \qquad Block: \qquad
> Solving a system by graphing is limited by the accuracy of the graph
> When the intersection point is not an exact integer, it is difficult to determine the coordinates from the graph
> Solving a system algebraically does not depend on a graph, and always gives exact coordinates
> The method used to solve a system algebraically is an extension of the addition property used to solve an equation for a single variable

Rule of Addition

For all real numbers a, b, c and d; if $a=b$, and $c=d$, then $a+c=b+d$

Solving a Linear System by the Addition Method

1. Write the equations of the system in STANDARD FORM: $\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$
2. Multiply the terms of one equation, or both of the equations, by a constant such that the coefficients of x or y are different only in their sign
3. Add the equations, and solve the resulting equation
4. Substitute the value obtained in step 3 into either of the original equations, and solve for the remaining variable
5. Steps 3 and 4 give the solution to the system
6. To check the solution, take the values from steps 3 and 4 , and substitute them into the equation not used in step 4.
Example 1:
Solve: $x+y=6$
and
$x-y=4$

Solution 1:

$$
\begin{aligned}
& x+y=6 \\
& x-y=4 \\
& 2 x \quad=10 \quad \rightarrow \quad x=5
\end{aligned}
$$

To find y, substitute $x=5$ in one of the original equations.

$$
x+y=6 \quad \rightarrow \quad 5+y=6 \quad \rightarrow \quad y=1
$$

Check: \quad Substitute $(5,1)$ into the equation not used, $x-y=4 \quad \rightarrow \quad 5-1=4$ True!

The solution to the system is $(5,1)$

Example 2:
Solve: $y=x+4$
and

$$
x+2 y=5
$$

Solution 2:
Rewrite $\quad y=x+4$
as $\quad-x+y=4$

$$
\begin{aligned}
-x+y & =4 \\
x+2 y & =5 \\
3 y & =9 \quad \rightarrow \quad y=3
\end{aligned}
$$

To find x, substitute $y=3$ in one of the original equations.

$$
x+2 y=5 \quad \rightarrow \quad x+2(3)=5 \quad \rightarrow \quad x=-1
$$

Check: \quad Substitute $(-1,3)$ into the equation not used,

$$
y=x+4 \quad \rightarrow \quad 3=-1+4 \quad \text { True! }
$$

The solution to the system is $(-1,3)$

Example 3: \quad Solve: $2 x-3 y=2$ and $\quad x+2 y=8$

Solution 3: \quad To obtain coefficients for x that differ only in sign, multiply the second equation by -2 Add the results to obtain an equation that has only one variable y.

$$
\begin{array}{rlrl}
2 x-3 y & =2 \\
-2(x+2 y=8)
\end{array} \quad \rightarrow \quad \begin{aligned}
2 x-3 y & =2 \\
-2 x-4 y & =-16 \\
-7 y & =-14
\end{aligned} \quad \rightarrow \quad y=2
$$

To find x, substitute $y=2$ in one of the original equations.

$$
x+2 y=8 \quad \rightarrow \quad x+2(2)=8 \quad \rightarrow \quad x=4
$$

Check: \quad Substitute $(4,2)$ in to $2 x-3 y=2 \rightarrow 2(4)-3(2)=2 \rightarrow 2=2$ True!

The solution to the system is $(4,2)$

Example 4:
Solve: $4 x+3 y=5$
and
$3 x-2 y=8$

Solution 4: \quad Multiply Equation 1 by 2 and Equation 2 by 3, then add the results

$$
\begin{aligned}
& 2(4 x+3 y=5) \quad \rightarrow \quad \begin{array}{l}
8 x+6 y \\
3(3 x-2 y=8) \\
\underline{9 x-6 y}
\end{array}=24 \\
& 17 x \quad=34 \quad \rightarrow \quad x=2
\end{aligned}
$$

To find y, substitute $x=2$ in one of the original equations.

$$
4 x+3 y=5 \quad \rightarrow \quad 4(2)+3 y=5 \quad \rightarrow \quad 3 y=-3 \quad \rightarrow \quad y=-1
$$

Check: \quad Substitute $(2,-1)$ in to $3 x-2 y=8 \rightarrow 3(2)-2(-1)=8 \rightarrow 8=8$ True!

Example 5:
Solve: $3 x-2 y=1 \quad$ and $\quad-6 x+4 y=3$

Solution 5: \quad Multiply Equation one by 2, then add the results.

$$
\begin{aligned}
2(3 x-2 y=1) \\
-6 x+4 y=3
\end{aligned} \quad \rightarrow \quad \begin{aligned}
6 x-4 y & =2 \\
-6 x+4 y & =3 \\
0 & =5
\end{aligned}
$$

There is no solution so the lines are PARALLEL

Example 6: \quad Solve: $2 x+5 y=2$ and $-4 x-10 y=-4$

Solution 6: \quad Multiply Equation one by 2, then add the results

$$
\begin{aligned}
2(2 x+5 y=2) \\
-4 x-10 y=-4
\end{aligned} \quad \rightarrow \quad \begin{aligned}
4 x+10 y & =4 \\
\hline-4 x-10 y & =4 \\
0 & =0
\end{aligned}
$$

There are infinite solutions so the lines are the SAME

Section 4.1b - Practice Problems

Solve by the Addition Method

1. $x-y=4$ and $x+y=-6$
2. $x-2 y=-1$ and $-x+y=1$
3. $3 x-2 y=-5$ and $3 x+y=-11$

PROFICENT LEVEL QUESTIONS

5. $x=3 y$ and $y=5 x+14$	$6.3 x-11=8 y$ and $x+6 y-8=0$
$7 x+5 y=17$ and $4 x-y=-8$	

7. $3 x+5 y=17$ and $4 x-y=-8$
8. $4 x+3 y=1$ and $3 x+2 y=2$
9. $7 x-3 y=-5$ and $3 x+5 y=-21$
10. $5 x-3 y=10.5$ and $2 x+5 y=-2$
11. $3 x-2 y=6$ and $-6 x+4 y=-6$
12. $3 x-2 y=6$ and $-6 x+4 y=-12$

EXTENDING LEVEL QUESTIONS

15. $\frac{3}{x}+\frac{4}{y}=\frac{5}{2}$ and $-\frac{5}{x}+\frac{3}{y}=-\frac{7}{4}$
16. $0.1 x+0.01 y=0.73$ and $0.2 x+0.05 y=1.55$
17. $\frac{x}{2}+\frac{y}{5}=\frac{4}{5}$ and $\frac{x}{6}-\frac{y}{2}=\frac{5}{6}$
18. $0.02 x+\frac{y}{2}=0.4$ and $\frac{x}{2}-0.4 y=-2.9$
19. $\frac{x}{4}-\frac{y}{2}=\frac{7}{24}$ and $\frac{x}{3}+\frac{y}{2}=0$

Section 4.1b - Answer Key

1. $(-1,-5)$
2. $(-1,0)$
3. $(5,-1)$
4. $(-3,-2)$
5. $(-3,-1)$
6. $\left(5, \frac{1}{2}\right)$
7. $(-1,4)$
8. $(4,-5)$
9. $(-2,-3)$
10. $(0,4)$
11. $\left(\frac{3}{2},-1\right)$
12. No Solution
13. Infinite Solutions
14. $(6,-4)$
15. $(2,4)$
16. No Solution
17. $(7,3)$
18. $(-5,1)$
19. $(2,-1)$
20. $\left(\frac{1}{2},-\frac{1}{3}\right)$

Extra Work Space

