Section 4.2a - Solving Linear Systems by Substitution

 This booklet belongs to: \qquad Block: \qquad> An algebraic method of substitution can be used to find the exact solution of a system
$>$ The substitution method requires writing one of the systems in terms of x, or in terms of y

Solving a Linear System by the Substitution Method

1. Solve one equation for one of its variables in terms of the other variable; this becomes equation (3).
2. Substitute the equation form step 1 into the other equation, and solve that equation
3. Take the value solved for in step 2 and substitute the value into equation (3)
4. Check the solution by inserting the x and y values calculated in steps 2 and 3 into the equation not used in step 3.

Example 1:
Solve: $2 x+y=4$
and
$3 x+4 y=1$
Solution 1: \quad Choose either equation and solve for y.

$$
2 x+y=4 \quad \rightarrow \quad y=-2 x+4 \quad \text { Equation }(3)
$$

In the other equation, replace y with $(-2 x+4)$, and solve for x.

$$
\begin{aligned}
3 x+4 y=1 \quad \rightarrow \quad 3 x+4(-2 x+4) & =1 \\
3 x-8 x+16 & =1 \\
-5 x & =-15 \\
x & =3
\end{aligned}
$$

To find y, substitute $x=3$ into Equation (3).

$$
y=-2 x+4 \quad \rightarrow \quad y=-2(3)+4 \quad \rightarrow \quad y=-2
$$

Check:
Substitute $(3,-2)$ in $3 x+4 y=1 \quad \rightarrow \quad 3(3)+4(-2)=1 \quad \rightarrow \quad 1=1 \quad$ True $!$

The solution to the system is $(3,-2)$

$$
\text { Example 2: } \quad \text { Solve: } 2 x-4 y=7 \text { and } \quad-x+8 y=-5
$$

Solution 2: \quad Choose either equation and solve for x.

$$
-x+8 y=-5 \quad \rightarrow \quad x=8 y+5 \quad \text { Equation }(3)
$$

In the other equation, replace x with $(8 y+5)$, and solve for y.

$$
\begin{aligned}
& 2 x-4 y=7 \quad \rightarrow \quad 2(8 y+5)-4 y=7 \\
& 16 y+10-4 y=7 \\
& 12 y=-3 \\
& y=\frac{-3}{12} \quad \rightarrow \quad y=-\frac{1}{4}
\end{aligned}
$$

To find x, substitute $y=-\frac{1}{4} \quad$ into Equation (3)

$$
x=8 y+5 \quad \rightarrow \quad x=8\left(-\frac{1}{4}\right)+5 \quad \rightarrow \quad x=3
$$

Check:

Substitute $\left(3,-\frac{1}{4}\right)$ in $2 x-4 y=7 \quad \rightarrow \quad 2(3)-4\left(-\frac{1}{4}\right)=7 \quad \rightarrow \quad 7=7$ True!

The solution to the system is $\left(3,-\frac{1}{4}\right)$

Example 3:
Solve: $3 x-y=5$
and $\quad-6 x+2 y=-10$
Solution 3: \quad Choose either equation and solve for y.

$$
3 x-y=5 \quad y=3 x-5 \quad \text { Equation }
$$

In the other equation, replace y with $(3 x-5)$, and solve for x.

$$
\begin{array}{r}
-6 x+2 y=-10 \quad \rightarrow \quad-6 x+2(3 x-5)=-10 \\
-6 x+6 x-10=-10 \\
\mathbf{0}=\mathbf{0}
\end{array}
$$

This is a true equation, therefore there are infinite solutions, and the lines must coincide.

Section 4.2a - Practice Problems

EMERGING LEVEL QUESTIONS

Solve by the substitution method

1. $y=-x+2$ and $2 x-y=4$
2. $x=3 y+2$ and $x-2 y=5$
3. $3 x+2 y=0$ and $x-3 y=0$

PROFICIENT LEVEL QUESTIONS

5. $2 x-y=5$ and $-4 x+2 y=-10$
6. $2 x-5 y=0$ and $x-y=3$
7. $3 x-y=5$ and $-3 x+y=5$
8. $y=-3 x-8$ and $y=15-2 x$
9. $y=3 x+4$ and $2 x-3 y=2$
10. $6 x-y=0$ and $8 x-3 y=25$
11. $y=\frac{1}{3} x+2$ and $2 x-6 y=-12$
12. $y=-2 x$ and $x+4 y=21$
13. $2 s+t=-3$ and $3 s+2 t=-4$
14. $2 x=3 y+4$ and $6 x=9 y+8$

EXTENDING LEVEL QUESTIONS

15. $\frac{1}{3} x-y=3$ and $2 x+\frac{1}{2} y=5$
16. $\frac{x}{2}-\frac{2 y}{3}=2$ and $\frac{x}{4}+3 y=-4$

Solve the system of linear equations for k so that there are:
17. One Solution

$$
y=3 x+2 \text { and } y=k x+2
$$

18. No Solutions

$$
y=2 x-5 \text { and } 2 x-y=k
$$

Section 4.2a - Answer Key

1. $(2,0)$
2. $(11,3)$
3. $\left(-\frac{5}{2},-4\right)$
4. $(0,0)$
5. Infinite Solutions
6. No Solutions
7. $(5,2)$
8. $(-23,61)$
9. $(-2,-2)$
10. $(-3,6)$
11. $(-2.5,-15)$
12. $(-2,1)$
13. Infinite Solutions
14. No Solutions
15. $(3,-2)$
16. $\left(2,-\frac{3}{2}\right)$
17. $k \neq 3$
18. $k \neq 5$

Extra Work Space

