Section 6.1b - Solving Right Angle Triangles

This booklet belongs to: \qquad Block: \qquad

- Solving triangles involves solving for all three angles and all three sides
- A quick reminder, all three angles in a triangle add up to $\mathbf{1 8 0}^{\circ}$
- At this level we only discuss RIGHT ANGLE triangles so we already know one angle is $\mathbf{9 0}{ }^{\circ}$
- So, the other two must also add to $\mathbf{9 0}{ }^{\circ}$

Solving Triangles

- Whenever we are solving triangle we need at least 2 pieces of information
- Either $\mathbf{2}$ sides or $\mathbf{1}$ side and $\mathbf{1}$ angle
- From there we can then solve for everything else

All of the rest of the information comes from working with ratios
To help remember these ratios we think about these three words

SOH CAH TOA

They stand for:

$$
\sin \theta=\frac{\text { Opposite }}{\text { Hypotenuse }} \quad \cos \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { Adjacent }}
$$

- With a right-angle triangle, depending on what angle you want, the sides get named differently

Different Solving Scenarios

An unknown Side - Using Tangent

- If you look at the triangle we have an angle and the opposite side
- We want the adjacent side
- So, we have two letters of TOA, so were using TANGENT

$\operatorname{Tan}(\theta)=\frac{\text { Opposite }}{\text { Adjacent }} \rightarrow \operatorname{Tan}(30)=\frac{7}{t}$
- Doing some Algebra:
$(t) \operatorname{Tan}(30)=7 \quad \rightarrow \quad t=\frac{7}{\operatorname{Tan}(30)}$
- Then we solve, you can simplify the $\operatorname{Tan}(30) 1^{\text {st }}$
$t=\frac{7}{0.5774} \quad \rightarrow \quad t=12.1$

An unknown Side - Using Tangent

- If you look at the triangle we have an angle and the adjacent side
- We want the opposite side
- So we have two letters of TOA, so were using TANGENT

An unknown Side - Using Sine

- If you look at the triangle we have an angle and the opposite side
- We want the hypotenuse
- So, we have two letters of SOH, so were using SINE

- Using the SOH Ratio from before:
$\operatorname{Sin}(\theta)=\frac{\text { Opposite }}{\text { Hypotenuse }} \rightarrow \operatorname{Sin}(30)=\frac{7}{t}$
- Doing some Algebra:
$(t) \operatorname{Sin}(30)=7 \quad \rightarrow \quad t=\frac{7}{\operatorname{Sin}(30)}$
- Then we solve, you can simplify the $\operatorname{Sin}(30) 1^{\text {st }}$
$t=\frac{7}{0.5} \quad \rightarrow \quad t=14$

An unknown Side - Using Sine

- If you look at the triangle we have an angle and the hypotenuse
- We want the opposite side
- \quad So we have two letters of SOH, so were using SINE

- Using the SOH Ratio from before:
$\operatorname{Sin}(\theta)=\frac{\text { Opposite }}{\text { Hypotenuse }} \rightarrow \operatorname{Sin}(25)=\frac{x}{15}$
- Doing some Algebra:
$(15) \operatorname{Sin}(25)=x$
- Then we solve, you can simplify the $\operatorname{Sin}(25) 1^{\text {st }}$
$(15)(0.4226)=x \quad \rightarrow \quad \boldsymbol{x}=\mathbf{6 . 3}$

An unknown Side - Using Cosine

- If you look at the triangle we have an angle and the adjacent side
- We want the hypotenuse
- So, we have two letters of CAH, so were using COSINE

An unknown Side - Using Cosine

- If you look at the triangle we have an angle and the hypotenuse
- We want the adjacent side
- So, we have two letters of CAH, so were using COSINE

An unknown Angle - Using Tangent

- If you look at the triangle we have the opposite and adjacent sides
- We want the angle
- So, we have two letters of TOA, so were using TANGENT

- Using the TOA Ratio from before:
$\operatorname{Tan}(\theta)=\frac{\text { opposite }}{\text { Adjacent }} \rightarrow \quad \operatorname{Tan}(\theta)=\frac{7}{12}$
- Then we can simplify the $\frac{7}{12} 1^{\text {st }}$
$\operatorname{Tan}(\theta)=0.5833$
- Then we use the inverse Tangent button
$\theta=\operatorname{Tan}^{-1}(0.5833) \quad \rightarrow \quad \mathbf{3 0 . 3}{ }^{\circ}$

An unknown Angle - Using Sine

- If you look at the triangle we have the opposite side and hypotenuse
- We want the angle
- So, we have two letters of SOH, so were using SINE

- Using the SOH Ratio from before:
$\operatorname{Sin}(\theta)=\frac{\text { Opposite }}{\text { Hypotenuse }} \rightarrow \operatorname{Sin}(\theta)=\frac{7}{12}$
- Then we can simplify the $\frac{7}{12} 1^{\text {st }}$
$\operatorname{Sin}(\theta)=0.5833$
- Then we use the inverse Sine button
$\theta=\operatorname{Sin}^{-1}(0.5833) \quad \rightarrow \quad 35.7^{\circ}$

An unknown Angle - Using Cosine

- If you look at the triangle we have the adjacent side and hypotenuse
- We want the angle
- So, we have two letters of CAH, so were using COSINE

- Using the CAH Ratio from before:
$\operatorname{Cos}(\theta)=\frac{\text { Adjacent }}{\text { Hypotenuse }} \rightarrow \operatorname{Cos}(\theta)=\frac{7}{12}$
- Then we can simplify the $\frac{7}{12} 1^{\text {st }}$
$\operatorname{Cos}(\theta)=0.5833$
- Then we use the inverse Sine button
$\theta=\operatorname{Cos}^{-1}(0.5833) \quad \rightarrow \quad \mathbf{5 4 . 3}{ }^{\circ}$

Relationship between Sine, Cosine, and Tangent

- Now that we have seen the ratio and angle relationship between Sine, Cosine, and Tangent, let's look at how they relate to one another.

Sine and Cosine

Consider this:

- All angles in a triangle add up to 180°
- Since $\angle \boldsymbol{C}=\mathbf{9 0}^{\circ}$, it means that $\angle \boldsymbol{A}+\angle \boldsymbol{B}=\mathbf{9 0}^{\circ}$

This gives us our first look at a trigonometric identity.
If: $\quad \angle A+\angle B=90^{\circ}$
Then: $\angle \boldsymbol{A}=\mathbf{9 0}^{\circ}-\angle \boldsymbol{B}$ and $\angle \boldsymbol{B}=\angle \boldsymbol{A}-\mathbf{9 0}^{\circ}$

From our SOH CAH TOA ratios we look at, and considering the triangle on the left:

$$
\begin{aligned}
& \sin A=\left(\frac{a}{c}\right)=\cos B \\
& \cos A=\left(\frac{b}{c}\right)=\sin B
\end{aligned}
$$

So, $\quad \sin \theta=\cos \left(90^{\circ}-\theta\right)$ and $\cos \theta=\sin \left(90^{\circ}-\theta\right)$
$\begin{array}{lll}\text { Example: } \sin 30^{\circ}=\cos 60^{\circ} & \cos 30^{\circ}=\sin 60^{\circ} \\ \sin 55^{\circ}=\cos 35^{\circ} & \cos 55^{\circ}=\sin 35^{\circ}\end{array}$

Tangent

Consider this:

From our SOH CAH TOA ratios we look at, and considering the triangle on the left:

$$
\sin A=\left(\frac{a}{c}\right) \quad \cos A=\left(\frac{b}{c}\right) \quad \tan A=\left(\frac{a}{b}\right)
$$

So, we get a relationship that can be represented as follows:

$$
\frac{\sin A}{\cos A}=\frac{\left(\frac{a}{c}\right)}{\left(\frac{b}{c}\right)}=\left(\frac{a}{c}\right) \cdot\left(\frac{c}{b}\right)=\frac{a}{b}=\tan A
$$

So, we get another trigonometric identity:

$$
\frac{\sin A}{\cos A}=\tan A
$$

Example: $\quad \frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\tan 30^{\circ}$

Sine 2 and Cosine ${ }^{2}$

- We will look at two more identities that will come in handy in the years ahead.
- It involves our trigonometric ratios and we tie that to the Pythagorean Theorem

Tangent ${ }^{2}$

- The last identity we will see comes directly from the one above

If:

$$
\sin ^{2} A+\cos ^{2} A=1 \quad \text { Note: } \quad \sin ^{2} A=(\sin A)^{2}
$$

Then: If we divide all terms by $\cos ^{2} A$ we get:

$$
\frac{\sin ^{2} A}{\cos ^{2} A}+\frac{\cos ^{2} A}{\cos ^{2} A}=\frac{1}{\cos ^{2} A}
$$

This simplifies to:

$$
\tan ^{2} A+1=\frac{1}{\cos ^{2} A}
$$

So, for this grade, we have 5 Trigonometric Identities

| 1. $\sin \theta=\cos \left(90^{\circ}-\theta\right)$ | 2. $\cos \theta=\sin \left(90^{\circ}-\theta\right)$ | 3. $\tan \theta=\frac{\sin \theta}{\cos \theta}$ |
| :--- | :--- | :--- | :--- |
| 4. $\sin ^{2} \theta+\cos ^{2} \theta=1$ | 5. $\tan ^{2} \theta+1=\frac{1}{\cos ^{2} A}$ | |

With this information we can solve for the missing information in a right-angle triangle in a number of ways
Example 1: Given $\sin \theta=\frac{4}{5}$ where θ is an acute angle. Find $\cos \theta$ and $\tan \theta$
Solution 1: Draw the triangle first.
In order to solve:

$$
\cos \theta=\frac{a}{5} \quad \text { and } \quad \tan \theta=\frac{4}{a}
$$

We need to know a.
Pythagorean Theorem is our best bet.

$$
\begin{array}{rll}
a^{2}+b^{2}=c^{2} & \rightarrow & a^{2}+4^{2}=5^{2} \\
a^{2}+16=25 & \rightarrow & a^{2}=25-16 \\
a^{2}=9 & \rightarrow & a=3
\end{array}
$$

Therefore,

$$
\cos \theta=\frac{3}{5} \quad \text { and } \quad \tan \theta=\frac{4}{3}
$$

Example 2: Given $\cos \theta=\frac{1}{3}$ find both $\sin \theta$ and $\tan \theta$
Solution 2: Draw the triangle first.

In order to solve:

$$
\sin \theta=\frac{b}{3} \quad \text { and } \quad \tan \theta=\frac{b}{1}
$$

We need to know b.

Pythagorean Theorem is our best bet.

$$
\begin{array}{rll}
a^{2}+b^{2}=c^{2} & \rightarrow & 1^{2}+b^{2}=3^{2} \\
1+b^{2}=9 & \rightarrow & b^{2}=9-1 \\
b^{2}=8 & & \rightarrow
\end{array}
$$

Therefore,

$$
\sin \theta=\frac{\sqrt{8}}{3} \quad \text { and } \quad \tan \theta=\frac{\sqrt{8}}{1}=\sqrt{8}
$$

- It works the same when given numerical values. Just consider the given ratio and use 1 as a denominator.

Example 3: Given $\tan \theta=1.7384$ find both $\sin \theta$ and $\cos \theta$
Solution 3: \quad Draw the triangle first.

In order to solve:

$$
\sin \theta=\frac{1.7384}{c} \quad \text { and } \quad \cos \theta=\frac{1}{c}
$$

We need to know c.
Pythagorean Theorem is our best bet.

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \quad \rightarrow \quad 1.7384^{2}+1^{2}=c^{2} \\
3.0220+1=c^{2} \quad \rightarrow \quad c^{2}=4.0220 \\
c=\sqrt{4.0220}=2.006=2
\end{gathered}
$$

Therefore,
$\sin \theta=\frac{1.7384}{2}=0.8668 \quad$ and $\quad \cos \theta=\frac{1}{2}$

Section 6.1b - Practice Problems

EMERGING LEVEL QUESTIONS

Solve for all the missing information. Round to the nearest tenth if necessary. (Drawings are not to Scale)
1.

$$
\begin{aligned}
& b= \\
& c= \\
& \theta=
\end{aligned}
$$

2.

$$
\begin{aligned}
& b= \\
& a= \\
& \theta=
\end{aligned}
$$

3.

$b=$
$a=$
$\theta=$

$$
\begin{aligned}
& b= \\
& c= \\
& \theta=
\end{aligned}
$$

Find the length of side $A B$

8.

9.

Find the exact value of the remaining trigonometric functions of the acute angle θ.
11. $\sin \theta=\frac{6}{11}$
12. $\tan \theta=\frac{4}{3}$
13. $\cos \theta=\frac{15}{17}$
14. $\sin \theta=\frac{\sqrt{3}}{2}$
15. $\cos \theta=\frac{1}{3}$
16. $\tan \theta=\frac{6}{7}$
17. $\sin \theta=\frac{3}{7}$
18. $\cos \theta=\frac{\sqrt{5}}{3}$
19. $\sin \theta=0.4896$

EXTENDING LEVEL QUESTIONS

21. If a triangle has a value of $\sin 30^{\circ}$, what is the cosine value in the same triangle?
22. Write $\tan 65^{\circ}$ in terms of sine and cosine.
23. Solve

$$
\sin ^{2} 45^{\circ}+\cos ^{2} 45^{\circ}=?
$$

24. Write $\sin ^{2} \theta+\cos ^{2} \theta=1$ in terms of tangent and cosine only.

Answer Key - Section 6.1b

1. $b=11.9$,	$c=15.6, \quad \theta=50^{\circ}$
2. $b=\sqrt{108}$,	$a=6, \quad \theta=60^{\circ}$
3. $b=21.3$,	$a=5.7, \quad \theta=15^{\circ}$
4. $b=27.5$,	$c=29.2, \quad \theta=70^{\circ}$
5. $a=8.6$,	$c=10.5, \quad \theta=35^{\circ}$
6. $\beta=55^{\circ}$,	$c=\sqrt{149}, \theta=35^{\circ}$
7. $A B=30$	
8. $A B=48.5$	
9. $A B=22.6$	
10. $A B=14$	

11. $\tan \theta=\frac{6}{\sqrt{85}} \quad \cos \theta=\frac{\sqrt{85}}{11}$
12. $\sin \theta=\frac{4}{5} \quad \cos \theta=\frac{3}{5}$
13. $\sin \theta=\frac{8}{17} \quad \tan \theta=\frac{8}{15}$
14. $\cos \theta=\frac{1}{2} \quad \tan \theta=\sqrt{3}$
15. $\sin \theta=\frac{\sqrt{8}}{3} \quad \tan \theta=\sqrt{8}$
16. $\sin \theta=\frac{6}{\sqrt{85}} \quad \cos \theta=\frac{7}{\sqrt{85}}$
17. $\cos \theta=\frac{\sqrt{40}}{7} \quad \tan \theta=\frac{3}{\sqrt{40}}$
18. $\sin \theta=\frac{2}{3} \quad \tan \theta=\frac{2}{\sqrt{5}}$
19. $\cos \theta=0.8719, \tan \theta=0.5615$
20. $\sin \theta=0.6077, \tan \theta=0.7651$
21. 60°
22. 1
23. $\frac{\sin 65^{\circ}}{\cos 65^{\circ}}$
24. $\tan ^{2} \theta+1=\frac{1}{\cos ^{2} \theta}$

Extra Work Space

